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Spiking neural P systems were introduced in the end of the year 2005, in the aim of in­
corporating in membrane computing the idea of working with unique objects ("spikes"), 
encoding the information in the time elapsed between consecutive spikes sent from a 
cell/neuron to another cell/neuron. More than one dozen of papers where written in the 
meantime, clarifying many of the basic properties of these devices, especially related to 
their computing power. 

The present paper quickly surveys the basic ideas and the basic results, presenting a 
complete to-date bibliography, and also giving a completing result related to the normal 
forms possible for spiking neural P systems: we prove that the indegree of such systems 
(the maximal number of incoming synapses of neurons) can be bounded by 2 without 
losing the computational completeness. 

A series of research topics and open problems are formulated. 
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1. Introduction; A Quick Overview of the Literature 

Spiking neural P systems (SN P systems, for short) were introduced in [13] in the aim 
of defining computing models based on ideas specific to spiking neurons, currently 
much investigated in neural computing (see, e.g., [7], [15], [16]). The resulting models 
are a variant of tissue-like and neural-like P systems from membrane computing 
(see [19] and the up-to-date information at the web site [24]), with very specific 
ingredients and way of functioning. 

Very shortly, an SN P system consists of a set of neurons (cells, consisting of only 
one membrane) placed in the nodes of a directed graph and sending signals (spikes, 
denoted in what follows by the symbol a) along synapses (arcs of the graph). Thus, 
the architecture is that of a tissue-like P system, with only one kind of objects 
present in the cells. The objects evolve by means of spiking rules, which are of the 
form E/ac —> a; d, where E is a regular expression over {o} and c, d are natural 
numbers, c > 1, d > 0. The meaning is that a neuron containing k spikes such that 
ak G L(E), k > c, can consume c spikes and produce one spike, after a delay of d 
steps. This spike is sent to all neurons to which a synapse exists outgoing from the 
neuron where the rule was applied. We will give details in Section 2. There also 
are forgetting rules, of the form as —> A, with the meaning that s > 1 spikes are 
forgotten, provided that the neuron contains exactly s spikes. We say that the rules 
"cover" the neuron, all spikes are taken into consideration when using a rule. (This 
is another major difference with respect to usual P systems, where a sub-multiset 
of the multiset of objects is "rewritten" by each applied rule.) The system works 
in a synchronized manner, i.e., in each time unit, each neuron which can use a rule 
should do it, but the work of the system is sequential in each neuron: only (at most) 
one rule is used in each neuron. One of the neurons is considered to be the output 
neuron, and its spikes are also sent to the environment. The moments of time when 
a spike is emitted by the output neuron are marked with 1, the other moments are 
marked with 0. This binary sequence is called the spike train of the system - it 
might be infinite if the computation does not stop. 

In the spirit of spiking neurons, the result of a computation is encoded in the 
distance between consecutive spikes sent into the environment by the (output neuron 
of the) system. (This idea, of taking the distance between two events as the result 
of a computation, was already considered for symport/antiport and for catalytic P 
systems in [1].) In [13] only the distance between the first two spikes of a spike train 
was considered, then in [21] several extensions were examined: the distance between 
the first k spikes of a spike train, or the distances between all consecutive spikes, 
taking into account all intervals or only intervals that alternate, all computations 
or only halting computations, etc. 

Systems working in the accepting mode were also considered: a neuron is desig­
nated as the input neuron and two spikes are introduced in it, at an interval of n 
steps; the number n is accepted if the computation halts. 

Two main types of results were obtained: computational completeness in the 
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case when no bound was imposed on the number of spikes present in the system, 
and a characterization of semilinear sets of numbers in the case when a bound was 
imposed. 

Another attractive possibility is to consider the spike trains themselves as the 
result of a computation, and then we obtain a (binary) language generating device. 
We can also consider input neurons and then an SN P system can work as a trans­
ducer. Such possibilities were investigated in [22]. Languages - even on arbitrary 
alphabets - can be obtained also in other ways: following the path of a designated 
spike across neurons, as proposed in [4] (this essentially resembles the trace lan­
guages investigated for usual P systems, see [19] and [24]), or generalizing the form 
of rules. Specifically, one uses rules of the form E/ac —• ap;d, with the meaning 
that, provided that the neuron is covered by E, c spikes are consumed and p spikes 
are produced, and sent to all connected neurons after d steps (such rules are called 
extended). Then, with a step when the system sends out i spikes, we associate a 
symbol 6$, and thus we get a language over an alphabet as many symbols as the 
number of spikes simultaneously produced. This case was investigated in [6]. 

Other extensions were proposed in [11] and [10], where several output neurons 
were considered, thus producing vectors of numbers, not only numbers. A detailed 
typology of systems (and generated sets of vectors) is investigated in the two papers 
mentioned above, with classes of vectors found in between the semilinear and the 
recursively enumerable ones. 

The proofs of all computational completeness results known up to now in this 
area are based on simulating register machines. Starting the proofs from small uni­
versal register machines, as those produced in [14], one can find small universal SN 
P systems (working in the generating mode, as sketched above, or in the computing 
mode, i.e., having both an input and an output neuron and producing a number 
related to the input number). This idea was explored in [18] and the results are as 
follows: there are universal computing SN P systems with 84 neurons using stan­
dard rules and with only 49 neurons using extended rules. In the generative case, 
the best results are 79 and 50 neurons, respectively. Of course, these results are 
probably not optimal, hence it is a research topic to improve them. 

In the initial definition of SN P systems several ingredients are used (delay, 
forgetting rules), some of them of a general form (general synapse graph, general 
regular expressions). As shown in [9], rather restrictive normal forms can be found, 
in the sense that some ingredients can be removed or simplified without losing the 
computational completeness. For instance, the forgetting rules or the delay can be 
removed, while the outdegree of the synapse graph can be bounded by 2, and the 
regular expressions from firing rules can be of very restricted forms. 

The dual problem, of the indegree bounding, was formulated as an open problem 
in [9]. We solve here this problem, proving, like in the case of the outdegree, that 
again a normal form holds true: systems with indegree two are computationally 
complete. 

In the next section we will introduce the spiking neural P systems, then 
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(Section 3) we will give some examples, also introducing in this way other ways 
of using them (generating strings, considering traces). Section 4 presents some re­
sults, without proofs, illustrating the computing power of these devices. Section 
5 gives the indegree normal form mentioned above. Further remarks and, mainly, 
further research topics are mentioned in Section 6. 

2. Spiking Neural P Systems 

We assume the reader to have some familiarity with (basic elements of) language 
and automata theory, e.g., from [23], and introduce directly the computing devices 
we discuss here. 

A spiking neural P system (in short, an SN P system), of degree m > 1, is a 
construct of the form 

II = (0,ai,... ,am,syn,out), 

where: 

(1) O = {a} is the singleton alphabet (a is called spike); 

(2) <TI , . . . , erm are neurons, of the form 

Gi = (rii,Ri),l <i <m, 

where: 
a) rii > 0 is the initial number of spikes contained by the neuron; 
b) Ri is a finite set of rules of the following two forms: 

(1) E/ac —• a; d, where E is a regular expression with a the only symbol 
used, c > 1, and d > 0; 

(2) as —> A, for some s > 1, with the restriction8, that as G L(E) for no 
rule E/ac —> a; d of type (1) from Ri\ 

(3) syn C {1 ,2 , . . . ,m} x {1 ,2 , . . . ,m} with (i, i) ^ syn for 1 < i < m (synapses); 
(4) out G {1 ,2 , . . . , m} indicates the output neuron. 

The rules of type (1) are firing (we also say spiking) rules, and they are applied 
as follows: if the neuron contains k spikes, ak £ L(E) and k > c, then the rule 
E/ac —> a; d can be applied, and this means that c spikes are consumed, only k — c 
remain in the neuron, the neuron is fired, and it produces a spike after d time 
units (a global clock is assumed, marking the time for the whole system, hence 
the functioning of the system is synchronized). If d = 0, then the spike is emitted 
immediately, if d = 1, then the spike is emitted in the next step, and so on. In the 
case d > 1, if the rule is used in step t, then in steps t, t+l,t + 2,... ,t + d— 1 the 
neuron is closed, and it cannot receive new spikes (if a neuron has a synapse to a 
closed neuron and tries to send a spike along it, then the spike is lost). In step t + d, 

aThis restriction is introduced in order to decrease the non-determinism of the system, but from 
a mathematical point of view it could be of interest to investigate the case when it is omitted. 
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the neuron spikes and becomes again open, hence can receive spikes (which can be 
used in step t + d+1). A spike emitted by a neuron <jj replicates and goes to all 
neurons Oj such that (i,j) S syn. If in a rule E/ac - > a ; d w e have L(E) = {ac}, 
then we write it in the simpler form ac —> a; d. 

The rules of type (2) are forgetting rules, and they are applied as follows: if the 
neuron contains exactly s spikes, then the rule as —> A can be used, and this means 
that all s spikes are removed from the neuron. 

In each time unit, in each neuron which can use a rule we have to use a rule, 
either a firing or a forgetting one. Because two firing rules E\ /aCl —> a; d\ and 
E-ilaP'1 —> a;d2 can have L(E\) D £(-£2) 7̂  0, it is possible that two or more rules 
can be applied in a neuron, and then one of them is chosen non-deterministically. 
Note however that we cannot interchange a firing rule with a forgetting rule, as all 
pairs of rules E/ac —> a;d and as —> A have disjoint domains, in the sense that 
as $ L(E). 

The initial configuration of the system is described by the numbers 
7ii,7i2,...,nTO of spikes present in each neuron. During a computation, the sys­
tem is described both by the numbers of spikes present in each neuron and by the 
state of each neuron, in the open-closed sense. Specifically, if a neuron is closed, we 
have to specify the number of steps until it will become again open, i.e., the con­
figuration is written in the form (pi/qi, • • • ,pm/qm); the neuron a contains Pi > 0 
spikes and will be open after qt > 0 steps (qi = 0 means that the neuron is already 
open). 

Using the rules as suggested above, we can define transitions among configura­
tions. A transition between two configurations C\, C2 is denoted by C\ = > C^- Any 
sequence of transitions starting in the initial configuration is called a computation. 
A computation halts if it reaches a configuration where all neurons are open and 
no rule can be used. With any computation, halting or not, we associate a spike 
train, the sequence t\, £2, • • • of natural numbers 1 < t\ < £2 < • • •> indicating time 
instances when the output neuron sends a spike out of the system (we also say that 
the system itself spikes at that time). 

In [13], with any spike train containing at least two spikes one associates a 
result, in the form of the number £2 — £1; we say that this number is computed by 
II. The set of all numbers computed in this way by II is denoted by A^II) (the 
subscript indicates that we only consider the distance between the first two spikes 
of any computation; note that 0 cannot be computed, that is why we disregard this 
number when estimating the computing power of any device). 

This idea was extended in [21] to several other sets of numbers which can be 
associated with a spike train: taking into account the intervals between the first k 
spikes, k > 2 (direct generalization of the previous idea), or between all intervals; 
only halting computations can be considered or arbitrary computations; an impor­
tant difference is between the case when all intervals are considered and the case 
when the intervals are taken into account alternately (take the first interval, ignore 
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the next one, take the third, and so on); the halting condition can be combined 
with the alternating style of defining the output. 

The result of a computation can be defined also as usual in membrane comput­
ing, as the number of spikes present in the output neuron in the end of a computation 
- we have then to work with halting computations. It is also possible to consider 
SN P systems working in the recognizing mode: we designate a neuron as the input 
one, we start the computation from an initial configuration, and we introduce in 
the input neuron two spikes, in steps t\ and £2; the number £2 — h is recognized by 
the system if the computation eventually halts. 

Then, the spike train itself can be considered as the result of a computation, 
codified as a string of bits: we write 1 for a step when the system outputs a spike 
and 0 otherwise. The halting computations will thus provide finite strings over the 
binary alphabet, the non-halting computations will produce infinite sequences of 
bits. If also an input neuron is provided, then a transducer is obtained, translating 
input binary strings into binary strings. Some of these possibilities will be illustrated 
below. 

3. Four Examples 

Before presenting results concerning the computing power of SN P systems, we 
consider several examples, some of them also indicating the modifications mentioned 
above. 

Fig. 1. An SN P system generating all natural numbers greater than 1. 

The first example, recalled from [13], is 

111 = ({a},CTi,cr2,crs,syn,3), with 

<ri = (2, {a2 J a a;0, A}), 
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<72 = (l,{a—> a;0, a —> a; 1}), 

(J3 = (3, {a3 —• a; 0, a ^> a; 1, a2 

syn = {(l,2), (2,1), (1,3), (2,3)}. 

A}), 

This system is given in a graphical form in Figure 1, following the standard way 
to pictorially represent a configuration of an SN P system, in particular, the initial 
configuration. Specifically, each neuron is represented by a "membrane" (a circle or 
an oval), marked with a label and having inside both the current number of spikes 
(written explicitly, in the form an for n spikes present in a neuron) and the evolution 
rules; the synapses linking the neurons are represented by arrows; besides the fact 
that the output neuron will be identified by its label, out, it is also suggestive to 
draw a short arrow which exits from it, pointing to the environment. 

This system works as follows. All neurons can fire in the first step, with neuron 
02 choosing non-deterministically between its two rules. Note that neuron 01 can 
fire only if it contains two spikes; one spike is consumed, the other remains available 
for the next step. 

Fig. 2. The initial configuration of system II2. 

Both neurons a\ and 02 send a spike to the output neuron, 0 ; these two spikes 
are forgotten in the next step. Neurons 01 and 02 also exchange their spikes; thus, 
as long as neuron 0^ uses the rule a —> a; 0, the first neuron receives one spike, thus 
completing the needed two spikes for firing again. 

However, at any moment, starting with the first step of the computation, neuron 
02 can choose to use the rule a —> a; 1. On the one hand, this means that the spike 
of neuron a\ cannot enter neuron 02, it only goes to neuron 03; in this way, neuron 
02 will never work again because it remains empty. On the other hand, in the next 
step neuron a\ has to use its forgetting rule a —> A, while neuron 03 fires, using 
the rule a —> <z;l. Simultaneously, neuron 0^ emits its spike, but it cannot enter 
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neuron (T3 (it is closed this moment); the spike enters neuron <7i, but it is forgotten 

in the next step. In this way, no spike remains in the system. The computat ion ends 

with the expelling of the spike from neuron 03. Because of the waiting moment 

imposed by the rule a —> a; 1 from neuron 03, the two spikes of this neuron cannot 

be consecutive, but at least two steps must exist in between. 

Thus, we conclude tha t (remember tha t number 0 is ignored) A ^ I I i ) = N —{1}. 

The next example, borrowed from [2], is presented in Figure 2, and it is meant 

to generate binary strings. 

11,21,32 

Co = (1/0,1/0, 2/0} 

,11 

(2/0, 0/0,1/0) (0/1,0/1,0/0) 

(3/0,0/0,0/0) (1/0,0/1,1/0) (1/0,1/0,1/0) 

11,22,31 

(2/0,1/0, 2/0) 

11 
2s 
31 

30 ~ ' 10,20,31 
(3/0,0/0,1/0) •- (4/0,0/0,0/0) 

Fig. 3. The transition diagram of system II2. 

Its evolution can be analyzed on a transit ion diagram as tha t from Figure 3, 
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which is a very useful tool for studying systems with a bounded number of spikes 
present in their neurons (we also say that such a system is finite): because the 
number of configurations reachable from the initial configuration is finite, we can 
place them in the nodes of a graph, and between two nodes/configurations we draw 
an arrow if and only if a direct transition is possible between them. In Figure 3, 
also the rules used in each neuron are indicated, with the following conventions: for 
each Tij we have written only the subscript ij, with 31 being written in boldface, in 
order to indicate that a spike is sent out of the system at that step; when a neuron 
<Tj, i = 1,2, 3, uses no rule, we have written iO, and when it spikes (after being closed 
for one step), we write is. 

We do not enter into details concerning the paths in this diagram. Anyway, the 
transition diagram of a finite SN P system can be interpreted as the representation 
of a non-deterministic finite automaton, with Co being the initial state, the halting 
configurations being final states, and each arrow being marked with 0 if in that 
transition the output neuron does not send a spike out, and with 1 if in the respec­
tive transition the output neuron spikes; in this way, we can identify the language 
generated by the system. In the case of the finite SN P system II2, the generated 
language is L(U2) = (0*0(11 U 111)*110)*0*(011 U 0(11 U l l l ) + (0 U 00)1). 

Fig. 4. The initial configuration of system II3. 

We consider now an SN P system, the one from Figure 4, meant to generate a 
language of traces: one spike is marked in the initial configuration (in the graphical 
representation, we prime one of the spikes); it is processed like any other spike, but 
its place in the system at the end of each computation step is recorded, and in this 
way we get a string. Specifically, if the marked spike is in neuron &i at the end of a 
step, then we write the letter 6j. The marked spike can or cannot be consumed when 
applying a spiking rule which does not consume all spikes. If consumed, then the 
mark passes to one of the produced spikes (goes non-deterministically with one of 
the spikes sent to neurons linked to the neuron where the marked spike was before); 
if not consumed, the marked spike remains in the original neuron. If the marked 
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spike is removed by a forgetting rule or goes to the environment, then the string 
is completed, even if the computation continues. However, in order to accept the 
string, the computation must eventually halt. 

Let us examine the functioning of system II3 whose initial configuration is given 
in Figure 4. It generates the language T(Ilz) = {6™, b™}, for n,m > 1. In the first 
step, neuron o\ consumes or does not consume the marked spike, thus keeping it 
inside or sending it to neuron 02 • One spike remains in neuron o~\ and one is placed 
in neuron 02- Simultaneously, neurons CT3 and 04 fire, and they spike after n — 1 and 
TO — 1 steps, respectively. Thus, in steps n and TO, neurons CTI and <T2, respectively, 
receive one more spike, which is forgotten in the next step together with the spike 
existing there. 

Note that n and m can be equal or different. 

intermediate 

delaying 

neurons 

a -

a2 

a3 

a4 

a5 

a6 

-+ a ;0 

- + a ; 0 

- + a ; 0 

-> A 

- + a ; 0 

-> A 

out 

Fig. 5. An SN P transducer computing a Boolean function of three variables. 

The last example illustrates the following result from [22]: Any function f : 
{0, l}k —> {0,1} can be computed by an SN P transducer with k input neurons 
(also using further 2k + 4 neurons, one being the output one). 
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The idea of the proof is suggested in Figure 5, where a system is presented which 
computes the function / : {0, l } 3 —> {0,1} denned by 

f(bi,h,b3) = l iff 6 ! + 6 2 + 6 3 ^ 2 . 

The three input neurons, <7jni, (Jin2, <Tj„3, are continuously fed with bits b\,b2, &3, 
and the output neuron will provide, with a delay of 3 steps, the value of /(61,b2,63)• 

4. Some Results 

There are several parameters describing the complexity of an SN P system: number 
of neurons, number of rules, number of spikes consumed or forgotten by a rule, etc. 
Here we consider only some of them and we denote by N2SNPm(rulek, consp, forgq) 
the family of all sets iV2(II) computed as specified in Section 2 by SN P systems 
with at most m > 1 neurons, using at most k > 1 rules in each neuron, with all 
spiking rules E/ar —> a;t having r < p, and all forgetting rules as —> A having 
s < q. When one of the parameters m,k,p,q is not bounded, it is replaced with 
*. When we work only with SN P systems whose neurons contain at most s spikes 
at any step of a computation (finite systems), then we add the parameter bounds 

after forgq. (Corresponding families are defined for other definitions of the result 
of a computation, as well as for the accepting case, but the results are quite similar, 
hence we do not give details here.) 

By NFIN, NREG, NRE we denote the families of finite, semilinear, and Turing 
computable sets of (positive) natural numbers (number 0 is ignored); they corre­
spond to the length sets of finite, regular, and recursively enumerable languages, 
whose families are denoted by FIN, REG, RE. We also invoke below the family of 
recursive languages, REC (those languages with a decidable membership). 

The following results were proved in [13] and extended in [21] to other ways of 
defining the result of a computation. 

Theorem 1. (i) NFIN = N2SNP1(rule*,cons1, forgo) = N2SNP2(rule*,cons*, 
forg*). 

(ii) N2SNP*(rulek,conSp, forgq) = NRE for all k >2,p >3,q > 3. 
(Hi) NSLIN = N2SNP*(rulek,consp, forgq, bounds), for all k > 3,q > 3, 

p > 3, and s > 3. 

Point (ii) was proved in [13] also for the accepting case, and then the systems 
used can be required to be deterministic (at most one rule can be applied in each 
neuron in each step of the computation). 

Let us now pass to mentioning some results about languages generated 
by SN P systems, starting with the restricted case of binary strings. We de­
note by L(n) the set of strings over the alphabet B = {0,1} describing the 
spike trains associated with halting computations in II; then, we denote by 
LSNPm(rulek, consp, forgq) the family of languages L(TV), generated by SN P sys­
tems II with the complexity bounded by the parameters m, k, p, q as specified above. 
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When using only systems with at most s spikes in their neurons (finite), we write 
LSNPm(rulek,consp, forgg, bounds) for the corresponding family. As usual, a pa­
rameter TO, k,p, q, s is replaced with * if it is not bounded. 

Theorem 2. (i) There are finite languages (for instance, {0fe, 10J'}, for any k>l, 
j > 0) which cannot be generated by any SN P system, but for any L G FIN, L C 
B+, we have L{1} G LSNP\(rule*, cons*, forgo, bound*), and if L = {xi,:£2, . . . , 
xn}, then we also have {0J+3Xj | 1 < i < n} G LSNP*(rule*, consi, forgo, bound*). 

(ii) The family of languages generated by finite SN P systems is strictly included 
in the family of regular languages over the binary alphabet, but for any regular 
language L C V* there is a finite SN P system II and a morphism h : V* —• B* 
such thatL = h-1{L(Ii)). 

(Hi) LSNP*{rule*, cons*, f org*) C REC, but for every alphabet V = {a\,a2, 
... ,ak} there are two symbols b, c not in V, a morphism hi : (V U {b, c})* —• B*, 
and a projection ft-2 : {V U {b, c})* —> V* such that for each language L C V*, 
L G RE, there is an SN P system H such that L = h2(h^1 (L(U))). 

These results show that the language generating power of SN P systems is rather 
eccentric; on the one hand, finite languages (like {0,1}) cannot be generated, on the 
other hand, we can represent any RE language as the direct morphic image of an 
inverse morphic image of a language generated in this way. This eccentricity is due 
mainly to the restricted way of generating strings, with one symbol added in each 
computation step. This restriction does not appear in the case of extended spiking 
rules. In this case, a language can be generated by associating the symbol 6, with 
a step when the output neuron sends out i spikes, with an important decision to 
take in the case i = 0: we can either consider bo as a separate symbol, or we can 
assume that emitting 0 spikes means inserting A in the generated string. Thus, we 
both obtain strings over arbitrary alphabets, not only over the binary one, and, 
in the case where we ignore the steps when no spike is emitted, a considerable 
freedom is obtained in the way the computation proceeds. This latter variant (with 
A associated with steps when no spike exits the system) is considered below. 

We denote by LSNePm(rulek,consp,prodq) the family of languages -L(II), gen­
erated by SN P systems II using extended rules, with at most m neurons, each 
neuron having at most k rules, each rule consuming at most p spikes and producing 
at most q spikes. Again, the parameters TO, k,p, q are replaced by * if they are not 
bounded. 

The next counterparts of the results from Theorem 2 were proved in [6]. 

Theorem 3. (i) FIN = LSNePi(rule*,cons*,prod*) and this result is sharp in 
the sense that LSNep2(rule2, cons2,prod2) contains infinite languages. 

(ii) LSNeP2(rule*,cons*,prod*) C REG C LSNePs(rule*,cons*,prod*); the 
second inclusion is proper, because LSNePs(rules,cons4:,prod2) contains non-
regular languages; actually, the family LSNePz(rulez,conss,prod4) contains non-
semilinear languages. 
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(Hi) RE = LSNeP*(rule*,cons*,prod*). 

It is an open problem to find characterizations or representations in our setup 
for families of languages in the Chomsky hierarchy different from FIN, REG, RE. 

5. Bounding the Indegree 

In general, in the results above, one uses all features of SN P systems, but, as proved 
in [9], this is not necessary. Here are the results proven in [9]: 

Theorem 4. Universality of SN P systems (with standard rules) can be obtained 
even for systems (i) without using a delay in firing rules, (ii) without using forgetting 
rules, (Hi) using only regular expressions of the forms a+ and ak,k > 1, in firing 
rules; (iv) each of these restrictions can be combined with the restriction of having 
a synapse graph with the outdegree at most two. 

Bounding also the indegree of the synapse graph was left as an open problem 
in [9]. We solve here this problem, affirmatively: like in the case of the outdegree, 
the bound two on the indegree does not prevent obtaining the computational com­
pleteness. 

In the proof of this result we use the characterization of NRE by means of 
register machines, so that we introduce this notion here. 

A (non-deterministic) register machine is a construct M = (m, H, 1^,1^,1), where 
m is the number of registers, H is the (finite) set of instruction labels, IQ is the start 
label (labeling an ADD instruction), lh is the halt label (assigned to instruction 
HALT), and / is the set of instructions; each label from H labels only one instruction 
from / , thus precisely identifying it. The instructions are of the following forms: 

• li : (ADD(r),^,Zfe) (add 1 to register r and then go to one of the instructions 
with labels lj,lk non-deterministically chosen), 

• li : (SUB(r),lj,lk) (if register r is non-empty, then subtract 1 from it and go to 
the instruction with label lj, otherwise go to the instruction with label Ik), 

• lh : HALT (the halt instruction). 

A register machine M generates a set N(M) of numbers in the following way: we 
start with all registers empty (i.e., storing the number zero), we apply the instruction 
with label lo and we continue to apply instructions as indicated by the labels (and 
made possible by the contents of registers); if we reach the halt instruction, then the 
number n present in register 1 at that time is said to be generated by M. (Without 
loss of generality we may assume that in the halting configuration all other registers 
are empty; also, we may assume that register 1 is never subject of SUB instructions, 
but only of ADD instructions.) It is known (see, e.g., [17]) that register machines 
generate all sets of numbers which are Turing computable. 

Let us denote by N2SNP(indp, oudq) the family of all sets A^II) computed by 
spiking neural P systems whose synapse graph has the indegree at most p and the 
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outdegree at most q. When one of the parameters p, q is not bounded, it is replaced 
with *. 

Theorem 5. N2SNP(ind2,oud*) = NRE. 

Proof. We only have to prove the inclusion NRE C N2SNP(ind2,oud^), and we 
do this in two steps: first we modify the constructions from [13], [21] by which the 
similar inclusion is proved without a bound on the indegree (an SN P system is 
constructed, simulating a given register machine), then we also bound the indegree 
of the constructed SN P system. 

For the first step, let us take an arbitrary register machine M = (m, H, lo, Z/,, J), 
as specified above. We construct an SN P system II such that N(M) = .A/2(II), 
following the same idea as in [13]: modules are built for simulating the ADD and 
SUB instructions of M, as well as for providing the output (i.e., for sending out two 
spikes at the right moments of time). A neuron is associated with each register and 
with each label of M; if a register r contains the number n, then the corresponding 
neuron ay contains In spikes. At the beginning of the computation, there is only one 
spike in the system, in neuron <7j0. This means that in the first step, this neuron fires. 
In general, a neuron associated with a label of M is empty during the computation, 
except when it is activated by receiving a spike. We will describe furthermore the 
functioning of the system II after presenting its modules. 

An ADD instruction li : (ADD(r),lj,lk) is simulated by a module as indicated in 
Figure 6, and a SUB instruction Z$ : (SUB(r),lj,lk) is simulated by a module as in 
Figure 7. 

Fig. 6. Module ADD, simulating the instruction li : (ADD(r),Zj, Jfc). 
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These modules are similar to those in [13], with an additional care paid to the 
indegree of certain neurons. Specifically, one introduces the new neurons with labels 
CJ5,CJ6 in module ADD and 0,3,^4 in module SUB (note that all neurons aCij are 
uniquely associated with the respective modules, because the label U is associated 
with only one instruction of M). Thus, we do not give full details concerning the 
functioning of these modules, and refer the reader to [13]; we only mention that 
the execution of a module starts by introducing a spike in neuron ait, and ends by 
introducing a spike in one of the neurons with labels lj and Ik, thus activating the 
respective module. The correct choice of the "exit" neuron is ensured by the inter­
play between neurons with spiking rules a —> a;0 and a —> a; 1. In the meantime, 
the neuron ay receives two spikes in the case of the ADD module, or is checked for 
zero and two spikes removed when this is possible, in the case of the SUB module. 

Fig. 7. Module SUB, simulating the instruction li : (SUB(r),/j ,^). 

If the computation of M never halts, then the work of ADD and SUB modules 
of n never halts. If the instruction lh '• HALT is reached, then neuron 07h receives 
a spike, and then the OUTPUT module from Figure 8 is activated. Note that the 
ADD modules do not use rules of neurons ar and that neuron o\ is only subject of 
modules ADD (register 1 is never decremented). This ensures the correct functioning 
of module OUTPUT, which will spike exactly twice, after a number of steps equal 
to the contents of register 1 of M. (Specifically, if the neuron o\ contains 2q spikes 
when lh is reached, then the output neuron sends two spikes out, in steps t and 
t + q, for some t depending on the length of the computation in M.) 
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C/il 

out 

Fig. 8. Module OUTPUT. 

The equality N{M) = ^ ( I I ) is obtained. Let us now examine the indegree of 
the system II. Neurons with labels c^ have the indegree one or two, but neurons 
associated with labels of M and with registers of M can have an arbitrarily large 
indegree. 

The case of neurons CTJ, where I G lab(M), is simpler: in each step of a compu­
tation, each such neuron can receive at most one spike along one of its incoming 
synapses. By introducing intermediate neurons as suggested in Figure 9, we can 
replace the synapses to neuron o~i in such a way that its indegree becomes 2. Note 
that instead of one computation step, we perform now a number of steps of the 
order of log2 k, where k was the previous indegree of the neuron. 

Slightly more complex is the situation of neurons or: in a step of a computation, 
such a neuron receives no spike if it is not involved in the current operation, one 
spike if it is involved in a SUB instruction, or two spikes if it is involved in an ADD 
instruction. Assume that for a neuron or we have the synapses (e_j,r), 1 < j < s, 
along which one spike can come, and the pairs of synapses (cj,r), (dj,r), for some 
1 < J' < k, such that one of the pairs of neurons (<rc., o^) sends two spikes to o~r 

(clearly, ej corresponds to labels U, Cj corresponds to labels CJ3, and dj to labels 
Cj^). Then we can proceed as follows: we apply the procedure described in Figure 
9 separately for neurons oCj, for neurons o^, and for neurons oej, concentrating 
step by step the synapses until reaching an intermediate unique neuron ac,O~D,GE, 
respectively. From neurons O~T),O~E we build synapses to a further neuron, ODE-

Now, from ac and ODE we construct synapses to the neuron or. The indegree of 
all neurons is now at most two (of course, "delaying" neurons, using a rule a —• a; 0 
only for passing the spike further, are necessary if s j^ k, in order to synchronize 
the the times of spikes arriving in or). 
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C\ C2 c 3 C4 c 5 

4 
C\ C2 C3 C4 C5 

Fig. 9. Decreasing the indegree of neurons <ri,l G lab(M). 

Still, a problem remains to be solved, that of the synchronization of the system. 
The procedures described above take more steps than initially necessary for the 
spikes to reach their targets. Let us denote by a the maximal number of steps 
necessary in any of the previously described procedures for sending the spikes from 
the input neurons to the output neurons. 

First, we add "delaying" neurons to constructions as the one in Figure 9, such 
that all blocks of this type take exactly a steps for sending the spikes from the 
input to the output neurons (this is an easy task: just add neurons with the rule 
a —> a; 0 as many times as necessary). 

Let us now examine again the modules ADD and SUB as changed after decreas­
ing the indegree. 
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In module ADD, the way from aCi3 and <rCi4 to ay takes now a steps instead of 
one; in order to re-synchronize the process, we have to add a — 1 delaying neurons 
also along the synapses (li, en), (li, C$2), (c«3, Cie). In this way, the paths from a^ to 
aCi5 and aCi6 will last a + 1 steps, as that from 0^ to ay. 

Similarly for the SUB modules: we add a — 1 delaying neurons along synapses 
(h, Cji), (li, Ci2), and thus the spikes of aii reach all neurons ar, acn,aCi2 at the same 
time, after a steps. 

In this way, the system obtained in the end of all these operations is equivalent 
with II and has the indegree 2. • 

The previous construction can be combined with the construction used in [9] for 
decreasing the outdegree, hence we get the following combined normal form result: 

Corollary 6. N2SNP(ind2,oud2) = NRE. 

What remains to investigate is the size (and the properties) of families 
N2SNP(indi,oudj) for (i,j) G {(1,1), (1, 2), (2,1)}. 

First, let us remark that NFIN C N2SNP(ind\,oudi): given a finite set F = 
{rii I 1 < i < k} of natural numbers, for the system 

II = ({a}, (2, {a2 J a -> a; 0} U {a -> a; m - 1 | 1 < % < k}), 0,1) 

we have A^II) = F (we can consider that this system has the indegree and the 
outdegree zero, as no synapse appears in it). 

Then, because the systems with outdegree one cannot increase the num­
ber of spikes from their neurons, it follows (as already observed in [13]) that 
N2SNP(ind2,oudi) C NREG (the system can be easily simulated by a finite 
automaton). 

A similar result is valid also for the family N2SNP(ind\,oud2). A system with 
such indegree and outdegree has the synapse graph of a very particular form: a 
possible cycle, from which starts binary trees. If there is no cycle, then only the 
tree containing the output neuron is relevant (no other tree contributes to the 
computations which determine the output), and from it only the synapses going to 
the output neuron - hence we can reduce the tree to a line. If there is a cycle, and 
the output neuron is on it, then no tree is relevant. If there is a cycle and the output 
neuron is on a tree emerging from the cycle, then we can trim all trees different 
from the one containing the output neuron, as well as all branches of this tree which 
are not on the way from the cycle to the output neuron, or after the output neuron. 

In conclusion, the graph is either a linear tree ended with the output neuron, or 
a cycle from which emerges a linear tree ended with the output neuron. In the first 
case, there are only a finite number of possible computations, hence the generated 
set of numbers is finite. In the second case, the number of spikes cannot increase 
in the neurons of the cycle, but it can increase in the neurons of the tree, because 
the cycle can repeatedly introduce spikes in the tree. However, if a neuron of the 
tree can ever use a rule, then its contents cannot increase unboundedly: after using 
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a spiking rule or a forgetting rule, the number of spikes in the neuron decreases. 
From the cycle, we get at most one spike in a step, hence the increase of the number 
of spikes is one by one; this means that when we reach again the number of spikes 
which enables the used rule, the rule is used again, decreasing the number of spikes. 
If a neuron never uses a rule, then it is useless, and can be removed from the 
system, and then we can remove also all neurons not linked to the output neuron. 
Consequently, again the contents of neurons is bounded, hence can be controlled by 
the states of a finite automaton. 

We synthesize all these observations in the following theorem: 

Theorem 7. NFIN C N2SNP(ind1,oud1) C N2SNP(indi,oudj) C NREG, for 
each (i,j)& {(1,2),(2,1)}. 

We conjecture that all families N2SNP(indi, oudj) from the previous result are 
equal to NFIN. 

6. Closing Remarks 

This overview was a quick one, meant only to let the reader have a general idea 
about spiking neural P systems, the basic notions and results. As suggested in the 
introduction, there are several other directions of research which were not mentioned 
above. For instance, an important issue concerns the efficiency of SN P systems, 
the possibility of solving computationally hard problems in a feasible (polynomial) 
time. This is usually achieved in membrane computing by means of tools which 
allow producing an exponential working space in a linear time; the standard way 
to do it is membrane division. However, in SN P systems we do not have such pos­
sibilities, the number of neurons remains the same and the number of spikes only 
increases polynomially with respect to the number of steps of a computation. How 
to introduce possibilities of generating an exponential workspace in a linear time 
remains as a research topic. Still, with inspiration from the fact that the brain con­
sists of a huge number of neurons out of which only a small part are used, in [3] one 
proposes a way to address computationally hard problems in this framework, by 
assuming that an arbitrarily large SN P system is given "for free", pre-computed, 
with a structure as regular as possible, and without spikes inside; solving a problem 
starts by introducing spikes in certain neurons (in a polynomially bounded num­
ber of neurons a polynomially bounded number of spikes are introduced); then, 
by moving spikes along synapses, the system self-activates, and a specific output 
provides the answer to the problem. This was illustrated in [3] for SAT: an SN P 
system is constructed, depending on SAT, and it is initiated for a given instance 7 
by introducing spikes in 2nm neurons, where n is the number of variables and m 
is the number of clauses of 7; in four steps, the system decides whether or not 7 is 
satisfiable. 

This way of solving problems, by activating a pre-computed resource, is not 
at all usual in computability, and we know no formalization of this approach; in 
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particular, we know no complexity classes defined in this framework. However, we 

believe tha t this is a research direction worth exploring, with a good motivation in 

bio-inspired computing. 

A lot of open problems and research topics are formulated in the papers men­

tioned in the previous sections (and listed in the bibliography). Standard questions 

concern the optimality of the computational completeness results (number of neu­

rons, rules, spikes consumed, forgotten or produced, etc.), characterizations of other 

families of numbers or of languages than those considered in Theorems 1, 2, 3, the 

passage to sets of vectors (with a series of results already reported in [11], [10]), 

combinations of the normal forms (or proofs tha t they cannot be combined with­

out losing power). A long list of problems concerns the use of SN P systems for 

generating infinite sequences of bits or for processing such sequences - see [22]. 

In what concerns the indegree/outdegree normal forms, it remains as a research 

topic to see whether other graph-theoretic restrictions might be of interest for SN P 

systems. Cycle structure of the graphs and planarity could be studied. As regards 

planarity, it is interesting to note tha t most of the examples from [13] and [21] deal, 

indeed, with planar SN P systems, but this is not the case with the systems used 

in the proofs. In turn , the ADD, SUB, and O U T P U T modules from the proof of 

Theorem 5 are also planar, but their combination in the system is not necessarily 

so, because this depends on the relations between the instructions of the start ing 

register machine. 

The study of SN P systems is rather recent, but the related bibliography is 

already comprehensive and continuously growing. We believe tha t this area is worth 

investigating, not only because of the importance of neural computing based on 

spiking (one speaks about "neural computing of third generation" in this respect), 

but also because of the mathematical (computability) interest and the possible 

ground for initiating a study of complexity classes based on pre-computed resources. 

The reader is advised to watch [24] for future developments in this area. 
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