
Parallel Computing With Water

Alec Henderson1, Radu Nicolescu1, Michael J. Dinneen1, TN Chan2,
Hendrik Happe3, and Thomas Hinze3

1 School of Computer Science,
University of Auckland, Auckland, New Zealand

2 Compucon New Zealand, Auckland, New Zealand
3 Department of Bioinformatics,

Friedrich Schiller University of Jena, Jena, Germany

Abstract. We further the work on a recently proposed membrane com-
puting model which utilises decentralised water tanks interconnected by
pipes with water flow controlled by valves. We demonstrate that such a
systems is able to construct ‘efficiently’: 1) A programmable sequential
random access machine (RAM) which we then extend to construct: 2) a
programmable exclusive read exclusive write (EREW) parallel random
access machine (PRAM).

Keywords: Water-based computing · Membrane systems · RAM ma-
chine · Fluidics · PRAM

1 Introduction

P systems first proposed by Gheorghe Păun in [1] are a parallel and distributed
model of computation inspired by biological membranes. P systems are decen-
tralised and typically evolve based on the content of a membrane. A water based
system was proposed by [2] which contained many properties similar to that of
membrane computing and was therefore described as a P system. The system
was decentralised and the content of each tank would evolve in parallel similar
to how P systems evolve.

In this work we demonstrate that the water system proposed in [2] and extended
in [3] can construct a PRAM machine. This model has been shown to be Turing
complete inherently proving that a RAM model can be built. However, this
construction does not consider the complexity of such a construction. In this work
we demonstrate that both a programmable RAM machine and a programmable
PRAM machine can be constructed ‘efficiently’.

2 Background

In this section we start by defining saturated arithmetic. We then define a RAM
machine and show how the euclidean algorithm can be implemented in RAM
instruction codes. Ending the section with the definition of the water computing
model which we utilise throughout the remainder of the paper.

2.1 Saturated arithmetic

As discussed in [4] saturation arithmetic restricts operations to a fixed range.
If a result exceeds the upper or lower limit the result is that limit. For example,
if the range was [0,10] then, 5 * 5 = 10 and 10 - 20 = 0. If the upper and
lower limits are +∞ and −∞ then it is standard arithmetic. For simplicity, we
denote saturating addition as ⊕ and saturating subtraction as 	. Throughout
the remainder of the text without loss of generality, we assume all saturated
arithmetic except for control tanks, to have lower bound 0, and upper bound
+∞ where, control tanks have 0 and 1.

2.2 RAM

There have been many models of computation proposed with the ’sequential
machines’ typically being the deterministic Turing machine and the random
access memory (RAM) machine [5]. In this work we shall focus on the RAM
machine as they usually have more practical uses than the traditional Turing
model.

A RAM machine consists of a finite program ofm lines and a sequence of registers
r1, r2, ...rn (perhaps an infinite sequence). The program of the RAM will consist
of a sequence of operation codes and parameters. Based on the definition in [6],
a RAM has the following operations:

1. ri ← C: assign a constant value C to register i.

2. ri ← rj ⊕ rk: add the value of two registers j and k and assign to register i.

3. ri ← rj 	 rk: subtract from register j the value stored in k and assign to
register i.

4. ri ← rrj : get the value y from register j, then get the value from register y
and assign to register i

5. rri ← rj : get the value y from register j, then get the value x from register
i and assign y to register x.

6. TRA m ri > 0 go to program line m if ri greater than 0, otherwise go to the
next line.

Where we use the item number as the op code as seen in Table 1.

We make the assumption that the output will be the values stored in the regis-
ters once the program has halted. A program halts when it has gone to a line
number in the program which is not defined. For example, consider the following
Euclidean algorithm pseudocode, for positive integers:

1 function gcd (a ,b)
2 while (a 6= b)
3 i f (a > b) then
4 a← a	 b

2

Table 1. Operations and there corresponding opcodes.

Operation Opcode

ri ← C 1 i C

ri ← rj ⊕ rk 2 i j k

ri ← rj 	 rk 3 i j k

ri ← rrj 4 i j

rri ← rj 5 i j

TRA m ri > 0 6 m i

5 else
6 b← b	 a
7 return a

This pseudocode translates into the RAM code presented in Table 2.

Table 2. Euclidean algorithm implemented for RAM machine.

Line number Operation Opcode Comment

1 r3 ← r1 − r2 3 3 1 2

2 TRA 6 r3 > 0 6 6 3 Go to line 6 if a > b

3 r3 ← r2 − r1 3 3 2 1

4 TRA 8 r3 > 0 6 8 3 Go to line 8 if b > a

5 TRA 10 r1 > 0 6 10 1 Halt a = b result is in r1
6 r1 ← r1 − r2 3 1 1 2 a← a− b

7 TRA 1 r1 > 0 6 1 1 Start the loop again

8 r2 ← r2 − r1 3 2 2 1 b← b− a

9 TRA 1 r2 > 0 6 2 1 Start the loop again

We note that our RAM model has a fixed size program with m lines. This is
able to implement RAM programs of length less or equal m. Noting that the
machine halts when it gets to line m + 1. Hence if a program had less than m
lines an additional line could be added to jump to line m+ 1.

As the RAM model we have discussed is inherently sequential one can extend it
to be parallel. A parallel RAM machine (PRAM) is one of the most well known
parallel computing models. As defined in [7, 8] a PRAM consists of a set of
processors p1, p2, ... and a set of shared registers r1, r2,Each processor can be
viewed as an individual RAM with its own program and sequence of registers.

Processors can only communicate via the shared memory via read or write op-
erations. The processors execute in a synchronous manner with each step taking
the same amount of time. Typically there are three models of PRAM discussed
in the literature to model the read and write of the shared memory they are:

3

– Exclusive read exclusive write (EREW): only one processor can read or write
to each shared register at a time.

– Concurrent read exclusive write (CREW): Any number of processors can
read from the same shared register at the same time but only one can write
to a each shared memory location.

– Concurrent read concurrent write (CRCW): Any number of processors can
read and write the same shared register at the same time.

The CRCW PRAM is typically further defined based on different ways of han-
dling concurrent writes these include[9]:

– Collision: A collision symbol is written. This does not give details about
which processors caused the collision or what they were attempting to write.

– Common: Successful write only if all processors writing to the same location
are writing the same value.

– Arbitrary: Only one arbitrary attempt is successful but, this choice will result
in the same final result.

– Priority: The processor with the lowest IDs write is successful.

2.3 Water model

The water based system originally proposed in [2] and extended in [3] works
by having a set of tanks interconnected with pipes which flow is controlled by
valves. This model contains no central control as well as no loops (water flows
in one direction). Formally the model is defined as:

Π = (T, T ′, F, E,R, L,C, V, S, P)

With its components:

– T finite set of tank identifiers.

– T ′ ⊂ T finite set of control tank identifiers.

– F ⊂ T ′ set of control tanks that when full indicate termination of the system.

– E ∈ T \ T ′ the unique infinite sink of the system.

– R ∈ T \ T ′ the unique infinite source in the system.

– L : T → N+ The level which the tanks are built, the lower the number the
conceptually higher the tank. Water can only flow from a tank with a lower
number to one with a higher number. r is at 0 and s at ∞.

– C : T → N+∪{∞} capacity of the tanks. Where we assume that value tanks
are able to be unbounded. Of course for practical cases all value tanks will
need to have finite capacity. Control tanks all have capacity 1 (they act as
Boolean values).

4

– V finite set of valve identifiers.

– S : V → (T = N+ ∪ T 6= N+) An expression from a valve identifier to check
whether or not a tank has a certain volume.

– P ⊂ T × T × P(V) (P(V) denotes the power set over V) finite set of pipes
where water flows from the first element to the second. A pipe (i, j, v) must
have L(i) < L(j), meaning water only flows in one direction (‘down’).

Typically this is modelled by either a set of equations or diagrams.

2.4 Examples

For self containment, we present four examples of water based functions, for a
more in detailed description of these functions see [3]. These functions are then
used in the construction of a RAM.

– Increment f(x) = x⊕1 (cf. Figure 1): The increment operator drains the two
input tanks (value and control) into the result. Once the inputs are empty
the output control tank is filled.

– Addition f(x, y) = x⊕ y (cf. Figure 2): The addition operator works similar
to the increment operator but, instead of the control tank draining to the
result the value y does. Once all the inputs are empty the output control
tank is filled

– Subtraction f(x, y) = x	 y (cf. Figure 3): The subtraction operator drains
from both x and y into the infinite sink until, y is empty. Once y is empty
any remaining water drains from x into the result tank. Once all inputs are
empty the output control tank is filled.

– Inplace copy f(x) = x (cf. Figure 4): Input tank x drains into result tank x1.
Whilst x drains tank a fills from the infinite source. Once x is empty a stops
filling and the control tank is drained into the infinite sink. Once the control
tank is drained the content of a (which stores the value of the original input)
is drained into the original input tank x. Once a is empty again the output
control is filled.

x x′

q′ = 1

x′ = 1

x = 0

x′ = 0

q′ = 1

z = x+ 1 q′

z′z

Fig. 1. A diagram representing the increment operator function z = x⊕ 1.

5

x y′

z z′

x′ y

q′ = 1 q′ = 1

q′ = 1 q′ = 1

q′

x′ = 1

y′ = 1

y = 0

x = 0

x′ = 0

y′ = 0

Fig. 2. A diagram representing the controlled saturating addition operator z = x⊕ y.

x y′

z
z′

q′ = 1

q′ = 1

y = 0

y 6= 0

q′ = 1

q′

x′ = 1

y′ = 1

x = 0

y = 0

x′ = 0

y′ = 0

x′

q′ = 1

y

q′ = 1

Fig. 3. A diagram representing the controlled saturating subtraction operator z = x	y.

x x′

q′

x′ = 1

a

x1 x′
1

x = 0

q′ = 1

x′ = 0

x 6= 0

q′ = 1

x′ = 1

q′ = 1

a = 0

x′ = 0

x1 = x

Fig. 4. A diagram representing the inplace copy function i(x) = x.

6

3 Constructing a programmable RAM machine

Constructing a programmable RAM machine using water can be broken into
phases. The first phase is to read the line number that we are up to. Using the
op code for that line run a function which executes that function. After that
has been done check whether the line number exceeds the program line count; if
it does then the RAM halts, otherwise it will do the process again. To make it
easier to follow we shall also break up the construction into modules which can
then be pieced together to form the entire RAM.

3.1 Execute line L of the program

Here we assume that the program being executed will be stored in water tanks
p1,1, p1,2, p1,3, p1,4, p2,1, p2,2, p2,3, p2,4, ..., pm,1, pm,2, pm,3, pm,4. Where pi,j denotes
the ith line with parameter j, noting that we assume that each line of code will
have one op code followed by three parameters; the third tank contents will be
ignored for operations of two parameters.

To start the program at line L and continue executing until we reach line m+ 1
we utilise the tank system presented in Figure 5. For brevity we have presented
an arbitrary program line po,j but this can be expanded for all program lines
by changing the valve for pi,k to L = i for the ith line. For example, the tanks
presented in Figure 5 for the euclidean algorithm would initially contain the
volumes presented in Table 3.

Noting that to run a function we use the tank system presented in Figure 6. The
tank system presented in Figure 6 is not repeated, only one instance exists for
a RAM machine. But the line inputs pi,j all drain into the inputs p1, p2, p3, p4.

7

Table 3. Initial volumes of water for tanks presented in Figure 5 for Euclidean algo-
rithm. Where we denote a tank i stores volume j by i(j)

L(1) L′(1) a′(0) s(0) s′(0) d′(0) c′(0) q′(0) x′(0) f ′(0) h′(0)
p1(0) p′1(0) p2(0) p′2(0) p3(0) p′3(0) p4(0) p′4(0) l(0) l′(0)

i pi,1 p′i,1 pi,2 p′i,2 pi,3 p′i,3 pi,4 p′i,4
1 3 0 3 1 0 0 2 0

2 6 0 6 0 3 0 0 0

3 3 0 3 0 2 0 1 0

4 6 0 8 0 3 0 0 0

5 6 0 10 0 1 0 0 0

6 3 0 1 0 1 0 2 0

7 6 0 1 0 1 0 0 0

8 3 0 2 0 2 0 1 0

9 6 0 2 0 1 0 0 0

8

q′

po,1 p′o,1 po,2 p′o,2 po,3 p′o,3 po,4 p′o,4 L L′

q′ = 1

L′ = 1

q′ = 1

L′ 6= 0

q′ = 1

L′ 6= 0

q′ = 1

L′ 6= 0

q′ = 1

L′ 6= 0

inplace copy

po,1,2 p′o,1,2 po,2,2 p′o,2,2 po,3,2 p′o,3,2 po,4,2 p′o,4,2

L = o L = o L = o L = o

a′

a′ = 1

p1 p′1 p2 p′2 p3 p′3 p4 p′4 l l′

s s′

Run function based on op code p1 as presented in Figure 6.

d′

s = m+ 1

s 6= m+ 1

c′

d′ = 1 c′ = 1

c′ = 1

s 6= 0

L = 0

c′ = 1

s = 0

x′

x′ = 1

c′ = 0

x′ 6= 0

c′ = 0

d′ = 1

f ′

f = 1

d′ = 0

h′

inplace copy inplace copy inplace copy

Fig. 5. A diagram representing the an outer loop of a RAM. Where the input L is
the line to start the programs execution (typically line 1). After the operation has
completed tank s will contain the next line to execute. Tank s will then be drained and
L filled with that contents. Once the program has ended tank h′ will be full. Noting
that we have shown only for one arbitrary program line o.

9

3.2 Executing an operation code

Once the line number is read and operation number selected it is passed into
the inner function presented in Figure 6. This will utilise the op code stored
in p1 and decide which operation to execute. For simplicity, we have presented
an arbitrary operation X, this can be expanded for all operations by taking
X = 1, 2, 3, 4, 5, 6.

p1 p′1 p2 p′2 p3 p′3 p4 p′4 l l′

s s′

q′p = 1 q′p = 1 q′p = 1 q′p = 1 q′p = 1

bX

q′p = 1

p′1 6= 0

p1 = X

q′p = 1

p′1 = 0

q′p = 1

p′1 = 0

q′p = 1

p′1 = 0

q′p = 1

p′1 = 0

q′p = 1

p′1 = 0

p3 = 0

p2 = 0

p1 = 0

l = 0

p4 = 0

q′p

p′1 = 1
p′2 = 1

p′3 = 1

p′4 = 1

l′ = 1

∃ibi = 1

iX i′X jX j′X lX l′X

d1 d′1

bX = 1

p1 6= 0

bX = 1

p2 6= 0

bX = 1

l 6= 0

p3 = 0

p2 = 0

p1 = 0

l = 0

p4 = 0

b1 6= 0

p3 = 0

p2 = 0

p1 = 0

l = 0

p4 = 0

bX 6= 0

Operation X.

kX k′X

bX = 1

p3 6= 0

p3 = 0

p2 = 0

p1 = 0

l = 0

p4 = 0

bX 6= 0

p3 = 0

p2 = 0

p1 = 0

l = 0

p4 = 0

bX 6= 0

Fig. 6. A diagram representing which of the 6 functions will be executed. Where for
simplicity we have shown for an arbitrary opcode X where X ∈ {1, 2, 3, 4, 5, 6}. Selected
operations are presented: Operation 1 in Figure 8, Operation 2 in Figure 9, Operation
4 in Figure10 and Operation 6 in Figure 11. Noting that ∃ibi = 1 is a shorthand to
describe six pipes from q′p each with one valve as shown in Figure 7.

As described earlier a RAM can be constructed using six basic operations. How-
ever, to simplify these operations we utilise the fact that these operations can
be viewed as a sequence of read and writes from registers.

Utilising read and write operators, we construct the base operations. For brevity,
we only show functions 1, 2, 4, and 6; functions 3 and 5 can be straightforwardly
derived from functions 2 and 4, respectively.

10

q′p

b1 = 1 b2 = 1 b3 = 1 b4 = 1 b5 = 1 b6 = 1

Fig. 7. Diagram to show the expanded version of the shorthand ∃ibi = 1 for tank q′p.

Although operation one is near identical to the write operation it is important to
note that the operations need to also return the new line number after completing
hence we use the increment function. Operation 1 can be viewed in Figure 8.

i1 i′1 c1 c′1 l1 l′1

d1 d′1

Write to register presented
in Figure 13

r′ n1 n′
1

q′1

n′
1 = 1

r′ = 1

q′ = 1 q′ = 1

n′
1 = 0

r′ = 0

Increment operator
presented in Figure 1

Fig. 8. A diagram representing operation 1: ri ← C. Returns l ⊕ 1 where l is the
program line number.

Operation 2 can be viewed in Figure 9 where we have left out the line number
increment. The line increment can be done just as we did in the first operation.

Operation 4 can be viewed in Figure 10.

Operation 6 can be viewed in Figure 11.

We implement the read and write functions in Figure 12 and Figure 13 respec-
tively. We note that these two functions are reading and writing to the same set
of registers so the registers r1, ...rn are shared between the figures.

11

j2 j′2 i2 i′2

q′2

j′2 = 1

i′2 = 1

e′2 = 0

f ′ 6= 0

d′

k2 k′2

q′2 = 1

j j′

q′2 = 1 q′2 = 1

Write to register j presented in figure 13

f ′

i i′

Read from register
i presented in Figure 12

r r′

q′2 = 1q′2 = 1

k′2 = 1

v′2

c c′

x x′

x⊕ y presented in Figure 2

y y′

v′2 = 1

r′ = 1

r = 0

w′
2

w′
2 = 1

r′ = 0

w′
2 6= 0

r′ = 0

k2 6= 0

k2 = 0

r′ = 0

u′
2

k2 = 0

r′ = 0

w2 6= 0

u′
2 = 1

u′
2 = 1

r 6= 0

c′2

r′ = 1

r = 0
r′ = 1

r = 0

u′
2 6= 0

z2 z′2

z′2 = 1

g′2

g′2 = 1

g′2 = 1

z2 6= 0

g′2 = 1

z′2 = 0

z2 = 0

e′2

g′2 6= 0

z2 = 0

z′2 = 0

f ′ = 1

e′2 = 0

Fig. 9. A diagram representing operation 2: ri ← rj ⊕ rk.

j4 j′4

v′4

q′4 = 1

w′
4

j4 = 0

u′
4

r = 0

r′1 = 1

c′4

r′ = 0

g′4

r = 0

r′ = 1

q′4

j′4 = 1

i′4 = 1

i i′

v′4 = 1

Read from register i
presented in Figure 12

r r′

j4 = 0

v′4 6= 0

r′ = 0

u′
4 6= 0

r 6= 0

w′
4 = 1

r′ = 1

j4 = 0

v′4 6= 0

r′ = 0

u′
4 6= 0

w′
4 = 1

r′ = 1

r′ = 1

c′4 = 1

f ′ = 1

j j′ c c′

Write to register j
presented in Figure 13

f ′

c4 = 1

r′ = 1
r 6= 0

g′4 = 1

r′ 6= 0

g′4 = 0

f ′ 6= 0

g′4 = 0

q′4 6= 0

d′

i2 i′2

q′2 = 1 q′2 = 1

Fig. 10. A diagram representing operation 4: ri ← rrj .

12

m6 m′
6 i6 i′6 l6 l′1

d1 d′1

q′6

l′6 = 1
r′ = 1

r′ = 0

m′
6 = 1

Read from register i
presented in Figure 12

r r′

q′6 = 1
q′6 = 1
r = 0

q′6 = 1
r 6= 0

n6 n′
6

x6 x′
6

Increment operator
presented in Figure 1

q′6 = 1
n′
6 = 1

q′6 = 1
n6 6= 0
n′
6 = 1

q′6 = 1
r = 0

q′6 = 1
r = 0

q′6 = 1
r 6= 0

q′6 = 1
r 6= 0

q′6 = 1
m6 = 0

m6 = 0
r = 0

n6 = 0
l6 = 0

r′ = 0

Fig. 11. A diagram representing operation 6: TRA m ri > 0.

r1 r′1 rn r′n...

q′

i i′

i′ = 1

q′ = 1

x1 x′
1

xn x′
n

r r′

z

z = 1

i = 0

i = 0

i = 1

q′ = 1
i = n

Inplace copy
presented in
Figure 4

Inplace copy
presented in
Figure 4

Fig. 12. A diagram representing read from register i.

13

r1 rn...

i i′ c c′

q′ = 1 q′ = 1

i = 1

z′

∀iri = 0

q′

c′ = 1

c = 0

q′ = 1

r′

i′ = 0

z′ = 0

i = 1

q′ = 1

z′ = 0
i = n

q′ = 1
z′ = 1

i = n
q′ = 1
z′ = 1

i′ = 1

Fig. 13. A diagram representing write to register i the value c : ri ← c. Where the ∀
is a shorthand to mean n valves with each valve being ri = 0.

4 Extending to PRAM

Extending to a EREW PRAM we note the following:

1. The only way for processors to communicate is via read/writes to the shared
memory.

2. The output of the PRAM will be the content stored on the shared memory
once all processors halt.

3. At each time step if any two processors try to read and or write from the
same shared memory location the result will be undefined.

4. Each operation will be run synchronously, i.e. at every time step each pro-
cessor fully complete one program line.

5. We assume that each processor has its own finite program and a set of local
registers.

In this section we extend our previously constructed RAM model to be a single
processor. We note currently our RAM model defined earlier does not have
operations to read/write to shared memory. But more importantly it does not
satisfy the synchronous behaviour required for operations. In this section we
shall first describe adding shared read and writes to our previously discussed
model. We shall then describe adding a synchronous lock to ensure each processor
evaluates each line of its program at the same time.

Denoting shared registers ρ we define the following additional operators:

14

– ri ← ρj : Read from shared memory and store in local register.

– ρi ← ri Read from local register and write to shared register.

To define these new functions we note that they are a simpler version of the
indirect operation presented in Figure 10. With only one read but, instead of
the read from local register r we define a read from shared memory ρ.

We extend the reading and writing of the local registers presented in Figure 12
and Figure 13. To extend it we have each processor 1, 2, ..., p have its own input,
output, and control tanks for the shared read and writes. The diagram presented
in Figure 14 shows how an arbitrary register X reads from shared memory.

The extension to the read can similarly be used for the write which we omit for
brevity. It is important to note for a EREW PRAM at any one time step only
one of the processors may read or write to a register. If multiple reads, writes or
a combination are done on the same shared memory the computation will have
an unexpected result.

ρ1 ρ′1 ρn ρn...

q′X

iX i′X

i′X = 1

q′X = 1 q′X = X

Inplace copy
presented in
Figure 4

x1 x′1 xn x′n

rX r′X

zX

zX = 1

iX = 0

iX = 0

...

Inplace copy
presented in
Figure 4

iX = 1 i1 = n

q′X = 1

q′X = 1
q′X = 1

q′X = 1

Fig. 14. Parallel read for arbitrary processor X.

To ensure that each line of code is run synchronously each processor must wait
until all other processors have completed there current line. To achieve this we
alter the outer program presented in Figure 5 to that presented in Figure 15 and
Figure 16.

15

q′

po,1 p′o,1 po,2 p′o,2 po,3 p′o,3 po,4 p′o,4 L L′

q′ = 1

L′ = 1

q′ = 1

L′ 6= 0

q′ = 1

L′ 6= 0

q′ = 1

L′ 6= 0

q′ = 1

L′ 6= 0

inplace copy

po,1,2 p′o,1,2 po,2,2 p′o,2,2 po,3,2 p′o,3,2 po,4,2 p′o,4,2

L = o L = o L = o L = o

a′

a′ = 1

p1 p′1 p2 p′2 p3 p′3 p4 p′4 l l′

s s′

Run function based on op code p1 as presented in Figure 6.

d′

s = m+ 1

s 6= m+ 1

c′

d′ = 1 c′ = 1

L = 0

c′ = 1

s = 0

x′

x′ = 1

c′ = 0

d′ = 1

f ′

f = 1

d′ = 0

h′

inplace copy inplace copy inplace copy

c′ = 1

s 6= 0

y′ 6= 0

o′ = 0

c′ = 1

s = 0

x′

c′ = 0

z′

y′ 6= 0

o′ = 0

Fig. 15. Parallel outer program that will only loop based on the synchronisation pre-
sented in Figure 16

16

z1 = 1

t′1

t′1 6= 1
h′
1 = 1

t′1 6= 1
zp = 1

t′p

t′p 6= 1
h′
p = 1

t′p 6= 1

∀it′i = 1

o′

o′ = 1 o′ = 1

z2 = 1

t′2

t′2 6= 1
h′
2 = 1

t′2 6= 1

o′ = 1

...

y′

y′ = 1

o′ = 0

Fig. 16. The synchronisation scheme which ensures that only after all other processors
have done an operation may they go to the next line. Noting that we use the shorthand
∀it′i = 1 which expands to the valves presented in Figure 17

o′

t′1 = 1
t′2 = 1
...
t′p = 1

Fig. 17. Expanded version of ∀it′i = 1.

5 Conclusion and future work

Using the previously defined water system [3] we have constructed: 1) a pro-
grammable RAM machine and 2) a programmable EREW PRAM machine. This
demonstrates the non centrally controlled model is inherently parallel and can
model one of the most well known parallel computing models. However, we have
only modelled the least powerful of the PRAM models leaving future work to
look at allowing concurrent reads and/or writes. Of course with this modelling
many well known results of traditional parallel computing transfer to this model.

Another open problem is the cost-based minimisation of the number of valves
and pipes.. Future work could look at physical realisations of this system and
determining which is more ‘expensive’ based on a well defined measurement of
cost. Physical realisations of the system could also have many other benefits such
as for education.

References

1. G. Păun, “Computing with membranes,” Journal of Computer and System Sciences,
vol. 61, no. 1, pp. 108–143, 2000.

2. T. Hinze, H. Happe, A. Henderson, and R. Nicolescu, “Membrane computing with
water,” Journal of Membrane Computing, vol. 2, no. 2, pp. 121–136, 2020.

17

3. A. Henderson, R. Nicolescu, M. J. Dinneen, T. Chan, H. Happe, and T. Hinze, “Tur-
ing completeness of water computing,” report CDMTCS-554, Centre for Discrete
Mathematics and Theoretical Computer Science, University of Auckland, Auckland,
New Zealand, July 2021.

4. F. Zappa and S. Esculapio, Microcontrollers. Hardware and Firmware for 8-bit and
32-bit devices. LIGHTNING SOURCE Incorporated, 2017.

5. I. Parberry, “Parallel speedup of sequential machines: A defense of parallel compu-
tation thesis,” SIGACT News, vol. 18, p. 54–67, Mar. 1986.

6. S. A. Cook and R. A. Reckhow, “Time bounded random access machines,” Journal
of Computer and System Sciences, vol. 7, no. 4, pp. 354–375, 1973.

7. E. Gafni, J. Naor, and P. Ragde, “On separating the EREW and CREW PRAM
models,” Theoretical Computer Science, vol. 68, no. 3, pp. 343–346, 1989.

8. P. B. Gibbons, “A more practical PRAM model,” in Proceedings of the first annual
ACM symposium on Parallel algorithms and architectures, pp. 158–168, 1989.

9. F. E. Fich, P. Ragde, and A. Wigderson, “Relations between concurrent-write mod-
els of parallel computation,” SIAM Journal on Computing, vol. 17, no. 3, pp. 606–
627, 1988.

18

