Computing with Membranes
Gheorghe PAUN

Institute of Mathematics of the Romanian Academy
PO Box 1 — 764, 70700 Bucuregti, Romania
E-mail: gpaun@imar.ro

Abstract. We introduce a new computability model, of a distributed parallel
type, based on the notion of a membrane structure. Such a structure con-
sists of several cell-like membranes, recurrently placed inside a unique “skin”
membrane. A plane representation is a Venn diagram without intersected sets
and with a unique superset. In the regions delimited by the membranes there
are placed objects. These objects are assumed to evolve: each object can be
transformed in other objects, can pass through a membrane, or can dissolve
the membrane in which it is placed. A priority relation between evolution
rules can be considered. The evolution is done in parallel for all objects able
to evolve. In this way, we obtain a computing device (we call it a P system):
start with a certain number of objects in a certain membrane and let the sys-
tem evolve; if it will halt (no object can further evolve), then the computation
is finished, with the result given as the number of objects in a specified mem-
brane. If the development of the system goes forever, then the computation
fails to have an output.

We prove that the P systems with the possibility of objects to cooperate
characterize the recursively enumerable sets of natural numbers; moreover,
systems with only two membranes suffice. In fact, we do not need cooperating
rules, but we only use catalysts, specified objects which are present in the rules
but are not modified by the rule application. One catalyst suffices.

A variant is also considered, with the objects being strings over a given al-
phabet. The evolution rules are now based on string transformations. We
investigate the case when either the rewriting operation from Chomsky gram-
mars (with respect to context-free productions) or the splicing operation from
H systems investigated in the DNA computing is used. In both cases, charac-
terizations of recursively enumerable languages are obtained by very simple P
systems: with three membranes in the rewriting case and four in the splicing
case.

Several open problems and directions for further research are formulated.

KEYWORDS: Membrane structure, P system, Recursively enumerable set, Matrix
grammar, Splicing, Natural Computing

1 Introduction

The present paper can be considered as a contribution to what is called in the last years
with the generic name of Natural Computing, a field of research which tries to imitate na-
ture in the way it “computes”, learning new computing models and computing paradigms
experimented for billions of years by nature and implementing them in computations done
in vitro (or, in many cases, in info, in symbolic terms only, maybe implemented in sili-
con media). Neural networks, Genetic algorithms, and DNA Computing are three areas
of Natural Computing already well established (in the first two cases also with proved
practical usefulness).

However, nature computes not only at the neural or genetic level, but also at the
cellular level. More generally, any non-trivial biological system is a hierarchical construct
where an intricate flow of materials and information takes place and which can be inter-
preted as a computing process.

At a more specific level with respect to the computing models we are going to define,
important to us is the fact that the parts of a biological system are well delimited by vari-
ous types of membranes, in the broad sense of the term, starting from the cell membrane,
going to the skin of organisms, and ending with more or less virtual “membranes” which
delimit, for instance, parts of an ecosystem. In very practical terms, in biology and chem-
istry one knows membranes which keep together certain chemicals and leave to pass other
chemicals, in a selective manner, sometimes only in one direction. Membranes delimiting
subsystems of a symbol manipulating system are also considered in the logical framework
to the so-called metabolic systems, as defined in [19], or in the so-called chemical abstract
machine, introduced in [4].

Another incentive of our work comes from distributed computing, where again rather
different but well delimited computing units coexist and are hierarchically arranged in
complex systems. From single small processors to the world wide web there is a long way
and in all its components we can see aspects as mentioned above. The grammar systems
theory mirrors in mathematical terms such distributed symbol processing systems (see,
e.g, [7] and, for recent developments, [25]), and will have some resemblance with (some
of) the computing models we consider here.

Starting from these observations, we first consider the notion of a membrane struc-
ture, as a mathematical counterpart of hierarchical architectures composed of membranes
recurrently distinguished in a given main membrane. We will represent such a structure
as a Venn diagram, with all the considered sets being subsets of a unique set and not
allowed to be intersected (two sets are either one the subset of the other, or disjoint).

The next step is to consider the notion of a super-cell, which is nothing else than a
membrane structure with certain objects placed in the regions delimited by the membranes.
The objects are identified by their “names” (mathematically, by symbols from a given
alphabet). Because several copies of the same object can appear in the same region, we
work with multisets, sets with multiplicities associated to their elements.

If the objects of a super-cell are able to evolve, then we obtain a computing device.
We call it a P system.

Thus, a P system is a membrane structure with objects in its membranes, with specified
evolution rules for objects, and with given input-output prescriptions. Any object, alone
or together with one more object, evolves, can be transformed in other objects, can pass
through one membrane, and can dissolve the membrane in which it is placed. All objects
evolve at the same time, in parallel; in turn, all membranes are active in parallel. The
evolution rules are hierarchized by a priority relation, given in the form of a partial order
relation; always, the rule with the highest priority among the applicable rules is actually
applied. If the objects evolve alone, then the system is said to be non-cooperative; if there
are rules which specify the evolution of several objects at the same time, then the system
is cooperative; an intermediate case is that where there are certain objects (we call them
catalysts), specified in advance, which do not evolve alone, but appear together with other
objects in evolution rules and they are not modified by the use of the rules.

The systems of this basic type are called transition P systems, in order to distinguish
this variant from other variants considered later.

It is somewhat surprising that with only these simple ingredients (and with designated
input and output membranes), the cooperating P systems and the systems with catalysts
have computational completeness, they can characterize the recursively enumerable sets
of natural numbers. Moreover, very simple membrane structures are enough: two mem-
branes suffice. The input and the output of a computation are codified in the number of
objects placed in certain input and output membranes, respectively.

An attractive feature of P systems is their intrinsic parallelism. All objects having
access to a rule should use that rule (with the restriction imposed by the priority relation).
Moreover, all membranes work in parallel. The effect of this two level parallelism on the
complexity of computations done by P systems is not yet clarified.

The super-cell structure can be used as a support for a computing device based on
any type of objects and any type of evolving rules associated with them. In the case
above, the objects were single symbols (finitely many for each concrete system, taken
from a denumerable alphabet). We can also take strings as objects. In this way, we
can use an infinite set of objects, which can evolve in many ways, defined by string
processing rules: rewriting, point mutations, insertion and deletion, and so on and so forth.
We consider here only two cases, when the strings evolve by rewriting (using context-
free rules) and by splicing, the operation defined in [15] as a model of the recombinant
behavior of DNA molecules under the influence of restriction enzymes. It is known that
the splicing operation is powerful — see [22]. This observation is confirmed here: P systems
based on splicing characterize the family of recursively enumerable languages. Moreover,
very simple systems are enough: we need only four membranes, arranged in a two level
structure. Splicing P systems with two membranes can generate non-regular languages,
while three membranes are sufficient to generate non-context-free languages.

A characterization of recursively enumerable languages is also obtained in the case of P
systems based on rewriting. The proof uses the characterization of recursively enumerable
languages by means of matrix grammars with appearance checking. This time, the number
of used membranes is still smaller than in the case of splicing: three.

We have mentioned that the membrane structure used in our systems is of the same

type as that used in the chemical abstract machine of [4], while the basic idea of evolution
rules as multisets transformations also appears in the so-called I'-systems introduced in
[3]. However, here we use further ingredients: dissolving a membrane, specifying a target
for an object produced by an evolution rule, priorities, input and output membranes.
Moreover, the way of using the considered systems is totally different here from the
mentioned papers: a P system is here a computing device; we are not looking (only) for
a correct development of the process, we are interested in the relation between an input
and an output. In some sense, our approach is much more classic, it pertains to Natural
Computing approached in automata and formal grammars theory style. This both makes
possible considering our devices as computing machineries, not only process models, and
necessary to compare their power to the known hierarchies of languages, such as Chomsky
hierarchy and Lindenmayer hierarchy.

2 Some General Prerequisites

We here specify a few elementary notions and notations which will be useful in the sub-
sequent sections.

We denote by N the set of natural numbers.

Let U be an arbitrary set. A multiset (over U) is a mapping M : U — N; M (a),
for a € U, is the multiplicity of a in the multiset M. We indicate this fact also in the
form (a, M(a)). (Of course, the multiplicity of each object with respect to any multiset
is finite.) The support of a multiset M is the set supp(M) = {a € U | M(a) > 0}. A
multiset M is empty when its support is empty (it is then denoted by ().

Let M{,My : U — N be two multisets. We say that M; is included in M, iff
M (a) < Ms(a), for alla € U. The union of M; and M, is the multiset MiUM, : U — N
defined by (M; U M;)(a) = Mi(a) + Ms(a), for all a € U. The difference M; — M, is here
defined only when M is included in M; and it is the multiset M; — My : U — N given
by (M; — Ms)(a) = Mi(a) — Ms(a), for all a € U.

A multiset M of finite support, {(a1, M(a1)), (ag, M(as3)),- .., (an, M(ay))}, can be also
represented by a string: a’ a3’ . gM(@) and all permutations of this string precisely
identify the objects in the support of M and their multiplicities. We will frequently use
below this more compact representation of multisets of a finite support.

An alphabet is a finite nonempty set of abstract symbols. Given an alphabet V', we
denote by V* the sets of all finite strings of elements in V, including the empty string,
A. (Thus, V* is the free monoid generated by V with the operation of concatenation and
the identity A.) The length of a string x € V* is denoted by |z|, and |z|, is the number
of occurrences in z of a € V. A set of strings (over an alphabet V') is called a language
(over V). Clearly, every string x € V* describes a multiset over V', denoted by m(z) and
defined by m(z) = {(a, |z|.) | a € V}.

For elements of formal language theory we will use here we refer to [34]. Details about
L systems, regulated rewriting, grammar systems, and DNA computing can be found in
[33], [11], [7], and [22], respectively. Some notions and notations which will be used only

locally will be introduced when necessary.

3 Membrane Structures

We now introduce the basic structural ingredient of the computing devices we will define
later: membrane structures.

Let us consider first the language MS over the alphabet {[,]}, whose strings are
recurrently defined as follows:

1. []e MS;
2. 4f py, .o iy € MS;n > 1, then [y ... u,) € MS;

3. nothing else is in M S.

Consider now the following relation over the elements of MS: x ~ y if and only if
we can write the two strings in the form x = ppopspia, y = pipspiopis, for pips € MS
and po, 3 € MS (two pairs of parentheses placed at the same level and neighboring
are interchanged, together with their contents). We also denote by ~ the reflexive and
transitive closure of the relation ~. This is clearly an equivalence relation. We denote by
MS the set of equivalence classes of MS with respect to this relation. The elements of
MS are called membrane structures.

Each matching pair of parentheses [, | appearing in a membrane structure is called a
membrane. The number of membranes in a membrane structure y is called the degree of
p and denoted by deg(u). The external membrane of a membrane structure y is called
the skin membrane of y. A membrane which appears in p € MS in the form [| (no other
membrane appears inside the two parentheses) is called an elementary membrane.

The depth of a membrane structure p, denoted by dep(u), is defined recurrently as
follows:

1. if =], then dep(p) = 1;

2. if & = [uy ... py), for some py, ..., pu, € MS,
then dep(u) = max{dep(u;) |1 <i<n}+1.

A membrane structure can be represented in a natural way as a Venn diagram. This
makes clear the fact that the order of neighboring membrane structures placed at the
same level in a larger membrane structure is irrelevant; what matters is the topological
structure, the relationships between membranes. In the subsequent sections we will make
an extensive use of such a representation.

The Venn representation of a membrane structure p also makes clear the notion of
a region in u: any closed space delimited by membranes is called a region of u. It is
clear that a membrane structure of degree n contains n regions, one associated with each
membrane.

4 Super-cells

We now make one more step towards the definition of a computing device, by adding
objects to a membrane structure.

Let U be a denumerable set whose elements are called objects.

Consider a membrane structure y of degree n,n > 1, with the membranes labeled in
a one-to-one manner, for instance, with the numbers from 1 to n. In this way, also the
regions of p are identified by the numbers from 1 to n. If a multiset M; : U — N is
associated with each region ¢ of u, 1 <7 < n, then we say that we have a super-cell.

Any multiset M; mentioned above can be empty. In particular, all of them can be
empty, that is, any membrane structure is a super-cell. On the other hand, each individual
object can appear in several regions, in several copies in each of them.

Several notions defined for membrane structures are extended in the natural way to
super-cells: degree, depth, region, etc.

The multiset corresponding to a region of a super-cell (in particular, it can be an
elementary membrane) is called the contents of it. The total multiplicities of the elements
in an elementary membrane m (the sum of their multiplicities) is called the size of m and
is denoted by size(m).

If a membrane m’ is placed in a membrane m such that m and m' contribute to
delimiting the same region (namely, the region associated with m), then all objects placed
in the region associated with m are said to be adjacent to membrane m' (so, they are
immediately “outside” membrane m' and “inside” membrane m).

A super-cell can be described by a Venn diagram where both the membranes and the
objects are represented (in the case of the objects, taking care of multiplicities).

Many further notions can be defined and investigated for super-cells as a goal per se.
We do not step here into this direction, but we only mention that several operations with
super-cells are natural: merge (putting together two or more super-cells in a new super-
cell), dissolve a given membrane (but not the skin, because it defines the super-cell itself),
substitute an elementary membrane with a given super-cell, separate membranes and/or
objects of a super-cell, according to given criteria and producing two or more super-cells,
etc. Such operations remind to us some of the operations with test tubes used in [1],
[2], [17]; those “test tube structures” can be considered super-cells of depth two, with all
objects — DNA molecules mainly — placed in the elementary membranes, the test tubes.

5 Transition P Systems

We now introduce the main subject of our investigation, a computing mechanism essen-
tially designed as a distributed parallel machinery, having as the underlying structure a
super-cell. The basic additional feature is the possibility of objects to evolve, according
to certain rules. Another feature refers to the definition of the input and the output of a
computation.

A transition P system of degree n,n > 1, is a construct

II = (Vva My, Wiy .oy Wy, (Rlapl): HRI) (Rnapn)ai())a

where:
(i) V is an alphabet; its elements are called objects;

(ii) p is a membrane structure of degree n, with the membranes and the regions labeled
in a one-to-one manner with elements in a given set A; in this section we always use
the labels 1,2,...,n;

(iii) w;, 1 < i <, are strings from V* representing multisets over V" associated with the
regions 1,2,...,n of y;

(iv) R;,1 < i < n, are finite sets of evolution rules over V associated with the regions
1,2,...,nof u; p; is a partial order relation over R;, 1 <1 < n, specifying a priority
relation among rules of R;.

An evolution rule is a pair (u,v), which we will usually write in the form u — v,
where u is a string over V and v = v’ or v = v'd, where v’ is a string over

(V x {here,out}) U (V x {in; | 1 < j <n}),

and ¢ is a special symbol not in V. The length of u is called the radius of the rule
U — v.

(v) i is a number between 1 and n which specifies the output membrane of II.

Of course, any of the multisets m(w;), ..., m(w,) can be empty (that is, any w; can
be equal to A) and the same is valid for the sets Ry, ..., R, and their associated priority
relations p;.

The components g and wy,...,w, of a P system define a super-cell. Grafically, we
will represent a P system by representing its underlying super-cell, and also adding the
rules to each region, together with the corresponding priority relation. In this way, we
can have a complete picture of a P system, much easier to understand than a symbolic
description.

The components p, wi, ..., Wy, (R1,p1),..., (Rn, pn) constitute the initial configura-
tion of II. In general, any sequence u',w; ,...,w; ,(Ri, i), ---, (Riy, pi,), with p' a
membrane structure obtained by removing from p all membranes different from iy, ..., %
(of course, the skin membrane is not removed), with m(wj}) multisets over V, 1 < j <&,
and {iy,...,it} C€{1,2,...,n}, is called a configuration of II.

It should be noted the important detail that the membranes preserve the initial labeling
in all subsequent configurations; in this way, the correspondence between membranes,
multisets of objects, and sets of evolution rules is well specified by the subscripts of these

elements.

A more compact and easy to read writing of a configuration, avoiding the use of
subscripts for multisets and sets above is that where the objects of the multisets are
written (using multisets or in the form of a string) directly in the region to which they
belong, and, similarly, the rules are written in the region where they can act. This is in
a good correspondence with the graphical representation of a transition P system and we
will use it especially for configurations where many components are empty.

For two configurations

C = (/«"lawzl'u""w;k’(Riupz&)a"'a(Rikapik))a
C? = (lj'llaw‘ljlp Tt aw;',la (Rj17pj1)7] (le’p]l))

of I we write C;, = (U, and we say that we have a transition from C; to Cy, if we can
pass from C; to Uy by using the evolution rules appearing in R;,, ..., R;, in the following
manner (rather than a completely cumbersome formal definition we prefer an informal
one, explained by examples).

Consider a rule u — v in a set R;,. We look to the region of y' associated with the
membrane 7;. If the objects mentioned by u, with the multiplicities specified by u, appear
in wj, (that is, the multiset identified by u is included in m(wj,)), then these objects can
evolve according to the rule u — v. The rule can be used only if no rule of a higher priority
exists in R;, and can be applied at the same time with u — v. More precisely, we start
to examine the rules in the decreasing order of their priority and assign objects to them.
A rule can be used only when there are copies of the objects whose evolution it describes
and which were not “consumed” by rules of a higher priority and, moreover, there is no
rule of a higher priority, irrespective which objects it involves, which is applicable at the
same step. Therefore, all objects to which a rule can be applied must be the subject of
a rule application. All objects in u are “consumed” by using the rule v — v, that is, the
multiset identified by u is subtracted from m(wy,).

The result of using the rule is determined by v. If an object appears in v in a pair
(a, here), then it will remain in the same region ;. (Often, when specifying rules, pairs
(a, here) are simply written a, the indication “here” is omitted.) If an object appears in
v in a pair (a, out), then a will exit the membrane 4; and will become an element of the
region immediately outside it (thus, it will be adjacent to the membrane #; from which it
was expelled). In this way, it is possible that an object leaves the super-cell itself: if it
goes outside the skin of the system, then it never comes back. If an object appears in a
pair (a,in,), then a will be added to the multiset m(w}), providing that a is adjacent to
the membrane ¢. If (a,in,) appears in v and the membrane ¢ is not one of the membranes
delimiting “from below” the region #;, then the application of the rule is not allowed.

If the symbol ¢ appears in v, then the membrane 7; is removed (we say dissolved) and
at the same time the set of rules R;, (and its associated priority relation) is removed.
The multiset m(w;,) is added (in the sense of multisets union) to the multiset associated
with the region which was immediately external to the membrane i;. We do not allow
the dissolving of the skin, because this means that the super-cell is lost, we do no longer
have a correct configuration of the system.

All these operations are done in parallel, for all possible applicable rules v — v, for
all occurrences of multisets v in the region associated with the rules, for all regions at
the same time. No contradiction appears because of multiple membrane dissolving, or
because simultaneous appearance of symbols of the form (a, out) and §. If at the same
step we have (a,in;) outside a membrane 7 and ¢ inside this membrane, then, because
of the simultaneity of performing these operations, again no contradiction appears: we
assume that a is introduced in membrane 7 at the same time when it is dissolved, thus a
will remain in the region placed outside membrane ¢; that is, from the point of view of a,
the effect of (a,in;),d is (a, here).

If there are rules in a P system II with the radius at least two, then the system is said
to be cooperative; in the opposite case, it is called non-cooperative. A system is said to be
catalytic if there are certain objects ¢y, ..., ¢, specified in advance, called catalysts, such
that the rules of the system are either of the form a — v, or of the form c;a — c¢;v, where a
is a non-catalyst object and v contains no catalyst. (So, the only cooperative rules involve
catalysts, which are reproduced by the rule application, and left in the same place. There
are no rules for the separate evolution of catalysts.) A transition P system with catalysts
is given in the form II = (V,C, y,wy, ..., wn, (R1, p1),- .., (Rny pn), %), where C C V is
the set of catalysts. A system is said to be propagating if there is no rule which diminishes
the number of objects in the system (note that this can be done by “erasing” rules, that
is, rules of the form a — A, but also by sending objects out of the skin membrane).

Remark 1. Several observations are here in order with respect to the relationships be-
tween the ingredients of our model and the biochemical reality which they remind. First,
it should be clear that our goal is not to model a real cell, but to propose a (theoretical)
computing model inspired by a cell-structure. Second, the membranes we consider here
are abstract items having two functions: they are separators of objects and channels of
communication. Any kind of an actual or virtual membrane can play these two roles, that
is, the notion of a membrane has here a mathematical meaning (similar to [4], [19]), not
necessarily a biochemical meaning. Moreover, our membranes are passive components of
a P system, in contrast to the actual bio-membranes. The latter are, in general, bilayered
lipidic structures, leaving certain chemical compounds to pass through them by concen-
tration/gradient reasons, because of electrical polarization, or, much more selectively, via
certain proteine channels. This last way of using a membrane for communicating is some-
what related to the communication by means of commands of the form (a,in;). The real
membranes can be dissolved, but they can also be inhibited, made opaque to any kind of
communication. We will not use here this latter possibility. O

Remark 2. The mode of evolving of objects in a P system provided with evolution
rules as described above can be interpreted in the following — idealized — biochemical way.
We have a cell, delimited by a skin (the cell membrane). Inside, there are cell-organs and
free molecules, organized hierarchically. The molecules and the organs float randomly
in the “cytoplasmic liquid” of each membrane. Under specific conditions, the molecules
evolve, alone or with the help of certain catalysts; these, of course, are not modified by
the reactions (the evolution rules encode chemical reactions among the objects which

evolve together). This is done in parallel, synchronously for all molecules (a universal
clock is assumed to exist; we will see in the proofs from Sections 7, 8, 9 that this rather
restrictive assumption of the existence of a universal clock is not essential in what concerns
the power of P systems of the forms considered in this paper). The new molecules can
remain in the same region where they have appeared, or can pass through the membranes
delimiting this space, selectively. Some reactions not only modify molecules, but also break
membranes. (We may imagine that certain chemicals are produced which break/dissolve
the membrane.) When a membrane is broken, the molecules previously placed inside it
will remain free in the larger space newly created, but the evolution rules of the former
membrane are lost. The assumption is that the reaction conditions from the previous
membrane are modified by the disparition of the membrane and in the newly created
space only the rules specific to this space can act. Of course, when the external membrane
is broken, then the cell ceases to exist, its parts fall apart. O

Remark 3. A special discussion deserves the way of defining and of using the priority
relation. Because each rule corresponds to a chemical reaction, the priority corresponds
to the probability that a reaction takes place (some input chemicals can be more active
than others). However, we have interpreted the priority in a strong sense: if a rule with a
higher priority is used, then no rule of a lower priority can be used, even if the two rules
do not compete for objects (if @ — b > ¢ — d and both a and ¢ are available, then only
the first rule is used, although it has nothing to do with object ¢). This interpretation
corresponds to the way of using priorities in ordered grammars in the regulated rewriting
area (see [11]), but also has a biochemical meaning: imagine that each rule “consumes”
not only objects, but also energy (or other common raw material); if a rule of a higher
priority is used, then no energy remains available for rules of a lower priority.

Of course, also the weak interpretation of the priority is of interest: a rule is used
always when objects exist which were not used by a rule of a higher priority. We do not
investigate here this variant. o

The following example will (hopefully) clarify the definition of a transition in a (co-
operative) P system.
Consider the system of degree 4:

II = (Va My Wi,y ..., Wy, (Rlapl)a ey (R4ap4)a4)a

V ={a,b,c, d},

n= [1[2[3]3]2[4]4]1’
wy = aac,

wy = a,

w3 = cd,

wy = A,

Ry ={r1:c— (c,ing), 19 : ¢ — (b,ing), r3:a — (a,ing)b, dd — (a,iny)},
p1 = {ri >r3, r2 > 13},
Ry, = {a — (a,ing), ac — 0},

10

N
1l

— 0},

Ry

4

i

w

I
.SH—\\.SH—\S

s

— (d, out), b — b},

(For the sake of simplicity, we have labeled only the rules which appear in the priority

relation.)

The system and the configurations obtained after two possible transitions are repre-

sented in Figure 1.

1 — (d, out)
a— (5
b—b
(a, m3
Step 0 ac — 6
(c,ing) :
aac N (b, ing) > a — (a,ing)b

N

dd — (a,ing)

T

AN

1 acd ¢
a—0 — (d, out)
a — (a,in3) b—b
Step 1 ac — 0
c— (eying) :
aa ¢ = (b iny) > a — (a,ing)b
\\ dd — (a, z'n4)
aacd (d, out)
(a,ing)
Step 2 ac— 0 b —b
(¢, ina) > a — (a,in2)b
bbd c— (b, ing) (a in,)
dd — (a,ing)

Figure 1. An example of transitions in a P system.

In the initial configuration we can apply a rule in membrane 1 and one in membrane
2. If in membrane 1 we use the rule ¢ — (b,in4), then the computation will never halt:
the rule b — b can be applied forever in membrane 4. Thus, we will not use the rule

11

¢ — (b,iny), but the rule ¢ — (c,iny). Because both these rules can be applied and they
have priority over the rule a — (a,iny)b, this latter rule cannot be used. Thus, a symbol
¢ is sent from membrane 1 to membrane 4 and at the same time a symbol a is sent from
membrane 2 to membrane 3. We get the second configuration from Figure 1.

Now, no c-rule in membrane 1 can be applied, hence the rule a — (a,ing)b can be
used. It has to be used for both copies of ¢ in membrane 1, hence two copies of a will
be sent to membrane 2 and two copies of b will remain in membrane 1. At the same
time, the rule ¢ — ¢ will be used in membrane 3, dissolving it, and the rule ¢ — (d, out)
will be used in membrane 4, sending a copy of d to membrane 1. As a result of these
operations, membrane 1 will contain the multiset (we write it as a string) bbd, membrane
2 will contain aacd, while membrane 4 is empty; membrane 3 does no longer exist (hence
the rule a — (a,in3) in membrane 2 is useless from now on).

Two more transitions can be performed. First, the rule ac — § can be used in
membrane 2, dissolving it and releasing the remaining objects ad. Thus, membrane 1
will contain the multiset abbdd, which makes possible for the first time the use of the rule
dd — (a,in,) from membrane 1. It consumes the two copies of d and sends a copy of a
to membrane 4. At the same time, the rule a — (a, iny)b sends a copy of a to membrane
2. No further rule can be applied, the “life” of the system stops here. O

The computing flavour of such a game is obvious: we start from an initial configuration
of our system provided with evolution rules and we get a sequence of transitions.

A sequence of transitions in a P system II, starting from the initial configuration Cj,
is called a computation with respect to II.

A computation Cy = C; = ... = (C,,,, m > 0, is successful if and only if each of
the following two assertions are true:

1. There is no rule in C,, which can be applied to the objects present in C,,.
2. The membrane 7, appears in C,,, namely, as an elementary membrane of it.

Reversing these statements, a computation as above is unsuccessful in each of the
following two cases:

— It can continue, that is, there exists a configuration C,,; such that C,,, = C,41-
Note that it is not necessary to have C,, # Cp,41.

— No rule can be applied, but either there is no membrane labeled with iy (it has been
dissolved by a symbol §), or there is such a membrane, but it is not an elementary
membrane in C,,.

In this way, a P system II can be seen as a device which generates multisets: start
from the initial configuration of I and let the system evolve. If a successful computation
is found, then we say that the multiset contained by the membrane labeled with 7 is
generated by II.

We can also consider the P systems as devices which generate numbers: work as
above and say that the size of the membrane iy (remember that the size is the sum of

12

multiplicities of objects in a membrane) is the generated number. In what follows, we
consider this latter possibility. We denote by N(II) the set of natural numbers generated
by II in the previous sense.

A generalization is to use a P system II for generating relations. For instance, we can
specify in advance certain objects a;,,...,a;; if at the end of a successful computation
the output membrane contains n4, ..., n; occurrences of objects a;,, ..., a;,, respectively,
then we say that (nq,...,n) belongs to the relation generated by II.

It is also possible to interpret a P system II as a device recognizing a multiset (that
initially placed in a distinguished elementary input membrane), or a number (the size of an
input elementary membrane), or a relation (the number of occurrences of certain objects
placed in a specified input membrane), or even as a device computing a partial mapping
from natural numbers to sets of natural numbers (give a number as an input, codified
in the size of a distinguished elementary membrane, and collect all numbers obtained as
outputs at the end of successful computations — if any). We will exemplify some of these
possibilities in the next section.

6 Examples

Before going to investigate the power of P systems, we will examine two examples. Their
aim is to further illustrate the way a P system works, as well as to give some hints to
the power and the versatility of P systems. We are not concerned with the efficiency of
the considered systems (in particular, with making use of the inherent parallelism of a P
system for efficiently computing or solving problems).

Example 1. Consider the P system of degree 4

H1 = (V; Maw17"'7w4’(R1ap1)7"') (R47p4):4)7

V:{a’ﬂb’b,,cﬂf}’

m = [1[2[3]3[4]4]2]1a

wlz)\: R1:®a plzwa

we =X, Ry ={b' = b, b—>b(c,ing), r1: ff = af, ro: f — ad},
p2:{7'1>7’2},

ws =af, R3={a—ab, a—=b6 f— ff}, p3=0,

UJ4:®, R4:®, ,04:®

The system is presented in Figure 2.

No object is free in membrane 2, hence no rule can be applied here. The only possibility
is to start in membrane 3, using the free objects a, f, present in one copy each. Using
the rules a — ab’, f — ff, in parallel for all occurrences of a and f currently available,
after n steps, n > 0, we get n occurrences of o' and 2" occurrences of f. In any moment,
instead of a — ab’ we can use a — b'0 (note that we always have only one copy of a). In
that moment we have n + 1 occurrences of b’ and 2"™! occurrences of f and we dissolve

13

membrane 3. The obtained configuration is

[1[2b'n+1f2"+1, ' =0, b—=b(c,ing), ri: ff—=af, ro: f—ad, r1>79 [, 1]y,

(We have used again the more compact string notation, o, instead of the multiset notation

(o 4).)

~)

3

¥ —=b

b — b(c,ing)

\ US>)
N /

Figure 2. A P system generating n?,n > 1.

The rules of the former active membrane 3 are lost, the rules of membrane 2 are now
active. Due to the priority relation, we have to use the rule f f — af as much as possible.
In one step, we pass from 8™ to b"*!, while the number of f occurrences is divided
by two. In the next step, from "', n + 1 occurrences of ¢ are introduced in membrane
4 (each occurrence of the symbol b introduces one occurrence of ¢). At the same time,
the number of f occurrences is divided again by two. We can continue. At each step,
further n 4+ 1 occurrences of ¢ are introduced in the output membrane. This can be done
n + 1 steps: n times when the rule ff — af is used (thus diminishing the number of f
occurrences to one), and one when using the rule f — ad (it may now be used). In this
moment, membrane 2 is dissolved, which entails the fact that its rules are removed. No
further step is possible. The obtained configuration is

n+l nt1)2
[1“2 ", [40(R IIEE

Consequently,
N = {m? | m > 1}.

If we omit membrane 4 (then the rule b — b(c,in4) is replaced by b — bc) and consider
membrane 1 as the output membrane, then we can generate the set of numbers {2" +
n?>+mn | n > 1} (all objects ever used contribute to the output). Furthermore, if we

14

also distinguish the occurrences of b from those of ¢, then we generate the relation o =
{(n,m) | n is the square root of m}.
Note that the P system II; is propagating and it has only one cooperative rule.

The previous P system is a generative one: it starts from a unique initial configuration
and, because of the nondeterministic evolution, it collects in its output membrane different
values of n2,n > 1. A variant of interest could be a P system just computing n? for a
given n. We leave to the reader the task of constructing such a system.

Example 2. Let us now consider a P system which has a decidability task: we
introduce in the input configuration two numbers, n and k, and ask whether or not n
is a multiple of k. In the affirmative case, we will finish with one object in the output
membrane; in the negative case we will have two objects in the output membrane.

The system is the following (of degree 3):

H2 = (Va My)‘, a'nckda a, (Rla (Z)): (RZa p2)a ((Z)a Qj)a 3),
V ={a,cd,d},
m = [1[2]2[3]3]1a
Ry = {dccd — (a,in3)},
Ry={ri:ac— ¢, ro:acd —c, r3:d— dé},
p2 = {r1 > rs,re > r3}.

The structure of II, is better seen in Figure 3.

A)

2 3
a™ckd

!
WC=C S 4 ds

ac = ¢

\ ded — (a,ing) j

Figure 3. A P system deciding whether k£ divides n.

In membrane 2 we subtract k& from n, repeatedly (by the rules ac — ¢/, ac’ — ¢: at
each step, k copies of a disappear, while c is reproduced, primed or not primed, alternating
the priming from a step to another one).

The rules ac — ¢, ac’ — ¢ have priority over the rule d — dd, therefore we can dissolve
membrane 2 only after exhausting the n occurrences of a. If n is a multiple of £ — and
only in this case — then we never have both occurrences of ¢ and of ¢ simultaneously

15

present in membrane 2 (or in membrane 1, after dissolving membrane 2). Therefore, the
rule dec — (a,ing) is used in membrane 1 if and only if n is not a multiple of k.

Note that this rule can be used at most once, because we have only one occurrence of
d, and that the computation stops after using the rule dec’ — (a,in3).

In conclusion, the computation always stops and the output membrane contains two
objects if and only if n is not a multiple of £ (in the opposite case, we have here only one
object).

The P systems considered above were cooperative systems and always the rules were
either propagating or easy to modify in order to obtain propagating rules. We have in-
sisted on the behavior of the P systems and not on their parallelism. This parallelism
appears at two levels: the objects in each membrane evolve in parallel, while the mem-
branes themselves evolve in parallel. The influence of the parallelism on the complexity
of computing the output (in comparison with other computing models) is one of the main
research topics left open.

7 The Power of Transition P Systems

The transition P systems are computationally complete, systems of a simple structure can
compute all recursively enumerable sets of natural numbers. In the proof of this result
we need the notion of a matrixz grammar with appearance checking.

Such a grammar is a construct G = (N, T, S, M, F), where N, T are disjoint alphabets,
S € N, M is a finite set of sequences of the form (A; — z,..., A, = z,), n > 1, of
context-free rules over N UT (with A; € N,z; € (N UT)*, in all cases), and F is a set of
occurrences of rules in M (we say that N is the nonterminal alphabet, 7" is the terminal
alphabet, S is the axiom, while the elements of M are called matrices).

For w,z € (N UT)* we write w = z if there is a matrix (4; — z;,..., 4, — z,) in
M and the strings w; € (NUT)*, 1 <i <n+ 1, such that w = wy, 2 = w41, and, for all
1 <4 < n, either w; = wA;w), w1 = wiz;wy, for some wi,w) € (NUT)*, or w; = wit1,
A; does not appear in w;, and the rule A; — z; appears in F. (The rules of a matrix are
applied in order, possibly skipping the rules in F' if they cannot be applied; we say that
these rules are applied in the appearance checking mode.) If F' = (), then the grammar is
said to be without appearance checking (and F' is no longer mentioned).

We denote by =" the reflexive and transitive closure of the relation =>. The lan-
guage generated by G is defined by L(G) = {w € T* | S =* w}. The family of languages
of this form is denoted by M AT,.. When we use only grammars without appearance
checking, then the obtained family is denoted by M AT.

We denote by REG, CF, CS, RE the basic families in the Chomsky hierarchy: of reg-
ular, context-free, context-sensitive, and recursively enumerable languages, respectively.
When dealing with numbers, RE denotes the family of recursively enumerable sets of
natural numbers.

It is known that CF € M AT C MAT,. = RE. Further details about matrix gram-
mars can be found in [11] and in [34].

16

We also consider here EOL systems, which are constructs of the form G = (V, T, w, P),
where V' is an alphabet, " C V, w € V*, and P is a finite set of context-free rules a — x
over V; for each a € V there is at least one rule a — x in P (we say that P is complete). For
Y,z €V wewrite y = z it y = ay, ... a;, 2 = T, ... T, for a;; > x; € P,1 < j < k.
The language generated by G is L(G) = {z € T* | w =* z}. We denote by EOL the
family of these languages and by Ls(E0L) the family of length sets of EOL languages: the
length set of a language L C V* is the set Ls(L) = {|w| | w € L}; EOL is an abbreviation
for “extended interactionless (zero-interaction) Lindenmayer”.

Let us denote by TP, (, ¢) the family of sets N (II), of numbers computed by transition
P systems of degree at most n,n > 1, of types a € {Coo, Cat, nCoo}, where Coo stands
for “cooperative”, Cat for “catalytic”, and nCoo for “non-cooperative”. The union of all
families T P,(«, 6),n > 1, is denoted by TP(«,d). When the membrane dissolving action
is not used, then ¢ is omitted.

Theorem 1. The relations in the diagram in Figure 4 holds, where the arrows indicate
wnclustons which are not necessarily proper.

Proof. The inclusions between 7T'P families are obvious from the definitions. The
inclusion TP(Coo,0) C RE can be proved in a straightforward manner (or we can invoke
the Church-Turing thesis). The inclusions Ls(E0L) C T P;(nCoo) and RE C T P,(Cat)
are proved in the following lemmas. O

Lemma 1. Ls(E0L) C TP (nCoo).

Proof. Consider an EOL system G = (V,T,w, P). For each symbol a € V we consider
a new symbol a'. Let V' be the set of these symbols and A the morphism defined by
h(a) = d', for a € V. Assume that P contains m rules, p; : a; — z;, 1 < i < m.

We construct the transition P system of degree 1

I=VuV'u{deth[],dh(w), (B, p)1),

with the following rules:

o d—d,

ro:d— e,

rial — h(x;), fori=1,2,...,m,
ry: e — (e, out),
re:ad —a,foraeT,
ra —>t,foraeV -T,

O

17

and the priority relations

T1 > Tay T1 > Thy To > Tq, T2 > 15, for all possible a,
r3 > 1 <1< m.

The system works as follows. To a multiset (represented here by a string) dh(z) we
can apply the rule 7; and nothing is changed; this forbids the use of rules r,,r.. As long
as d is present, each symbol o’ present in the current string should evolve by using a rule
r} associated with the corresponding rule r; in P. In this way, we simulate the derivations
in GG, using sentential forms composed of primed symbols. At any moment we can use
the rule d — e. Because rj is now applicable, no rule 7} can be used. However, the rules
4,7, are now applicable. If the obtained string is terminal with respect to G, then all
primed symbols are replaced by their non-primed versions and the computation stops.
If a symbol o is present, with a € V — T, then the trap-object { is introduced and the
computation will continue forever.

Consequently, Ls(L(G)) = N(II). O

RE =TPy(Cat) =TP(Cat) = TPy(Coo) = TP(Coo)
= TPy(Cat,d) = TP(Cat,§) = TP2(Coo,) = TP(Coo, d)

TP(nCoo,)
TP (Coo,) ,
TPl(COO) TPl(Cat, (5) TP(nCoo)
\ / RPQ(WJCOO’ 5) ‘
TP, (Cat) TP;(nCoo, 6) \
T P2 (nCoo)
TPy (nCoo)
Ls(EOL)

Figure 4. The hierarchy of the TP, («) families.

18

Lemma 2. (The Computational Completeness Lemma for Transition P Systems)
RE C TPy (Cat).

Proof. Clearly, each set @ C N can be identified with the language L(Q) = {a" |
n € Q} and @ is recursively enumerable if and only if L(Q) is recursively enumerable.
Take a matrix grammar with appearance checking, G = (N, {a}, S, M, F') generating the
language L(Q), for a given recursively enumerable set @ of numbers.

According to Lemma 1.3.7 in [11], without loss of generality we may assume that
N = Ny U N, U{S, 1}, with these three sets mutually disjoint, and that the matrices in

M are of one of the following forms:

1. (S— XA), with X € N;,A€ Ny,
2. (X =Y, A—zx),with X,)Y € N, A€ Ny,z € (NoU{a})F,
3. X =Y, A—1), with X,Y € Nj,A € N,,
4. (X = x1,A — 13), with X € N;, A € Ny, and 21,5 € {a}*.

Moreover, there is only one matrix of type 1 and F' consists exactly of all rules A — 7
appearing in matrices of type 3. The symbol { is a trap-symbol; once introduced, it is
never removed. A matrix of type 4 is used only once, at the last step of a derivation.
Assume that all matrices of forms 2, 3, 4 are labeled in a one-to-one manner, by
my, Mo, ..., Mg.
We construct the following transition P system with catalysts:

=V Ach [1[; Lol wi, A, (Ry, o), (0,0),2),

where

wy; = XAcZ, for (S — X A) the initial matrix in M,
V= Nl UN2U{C,D,'|',Z}U {XHXZI:XZH ‘ X € N171 <1< k}v

and the set R; contains the following rules (A is the morphism defined by h(a) = «, a €
Ny, and h(a) = (a,iny)):

1. X > X,, forall X € Nyand 1 <7 < k.

2. X; =»Y' form;: (X =Y, A — x) a matrix of type 2 in M.

3. cA— ch(z)D, for m; : (X — Y, A — z) a matrix of type 2 in M.
4. ¢D — c.

5. ¢Z — cf.

6. T — 1.

19

10.
11.
12.

13.

14

The
II):

Y' - Y, forallY € N;.

cX; = cY, form; : (X —- Y, A —) a matrix of type 3 in M.

. A— 1, forall Ae Ns.

X; = X/, for m; : (X = x1, A — z9) a matrix of type 4 in M.

cA — ¢ h(z9)D, for m; : (X — 21, A — z3) a matrix of type 4 in M.
X] — X/, for m; : (X — z;, A — z5) a matrix of type 4 in M.

Z = A

X! — h(zy), for m; : (X — 21, A — x9) a matrix of type 4 in M.

priorities are the following (at the same time, we give explanations on the work of

— each rule of type 1 has priority over all rules of other types;

(In the presence of a symbol from N; no rule can be used, excepting a rule of type
1, which specifies a matrix to be simulated by the subscript of the symbol X.)

each rule X; — Y’ of type 2 has priority over all rules of type 3 associated with
matrices m; with j # 4, as well as over all rules of types 5, 9, 11, 13;

(If a symbol X; is present, identifying a matrix m; : (X — Y, A — z) of type 2
from M, then the only rules which can be applied are X; — Y’, because only X;
is present, and cA — ¢ h(z)D, because all other rules are either of a lower priority
than X; — Y, or do not have symbols to which they can be applied; note that
always we have exactly one occurrence of the catalyst, hence the rule cA — ¢ h(z)D
can be used at most once; by using this rule, one occurrence of the symbol D is
introduced.)

the rule of type 4 has priority over the rule of type 5;

(This is a very important point of the construction, making a full use of the catalyst:
if there is no occurrence of D in the multiset, then the rule ¢Z — ¢t may — and
must — be applied, introducing the trap-object 1 which will evolve forever by the rule
1 — t. Thus, at the same time with X; — Y’ we have to use the corresponding rule
cA — ¢ h(z)D, which means that the use of the matrix m; is correctly simulated.
Note that the rule ¢Z — cf cannot be used at the previous steps, because of the
priority of X; — Y’ over it.)

each rule Y/ — Y of type 7, for Y € Ny, has priority over all rules of types 3, 9, 11,
13;

(At the same time with the rule ¢D — ¢, providing that D is present, we can use
the rule Y/ — Y'; no rule associated with a rule appearing in the second position in
a matrix can be applied, the simulation of the matrix m; is completed.)

20

— each rule ¢X; — ¢Y of type 8 has priority over all rules cA — ¢ h(z)D associated

with matrices of types 2 and 4, over all rules B — 1 with B € N, such that B # A,
as well as over all rules of types 5, 11, 13;
(When the symbol X; points to a matrix m; of type 3, then the catalyst is “kept
busy” by the rule ¢X; — ¢Y, in order not to use the rule ¢Z — cf; no rule for
evolving a symbol from Ny can be used, because of the priority; if, however, the
symbol A from m; : (X — Y, A — t) appears in the current multiset, then the
corresponding rule of type 9 should be used and the trap-object is introduced. In
this way, we simulate the use of this rule in the appearance checking mode.)

— each rule X; — X/ of type 10 has priority over all rules of type 3, of type 11
associated with matrices m; with j # 4, as well as over all rules of types 5, 9, 13;
(When simulating the use of a matrix of type 4, at the last step of a derivation in
(G, we proceed as for matrices of type 2, with the difference that at the end we have
also to introduce a terminal string instead of the “control symbol” X and also we
have to remove the primed successors of X.)

— each rule X] — X' of type 12 has priority over all rules of types 3, 11, 13;

(After introducing X; we replace it with X and, at the same time, we use the
corresponding rule cA — ¢ h(zy)D. At the next step, we check whether or not D is
introduced, that is, whether or not the simulation is correct. The symbol 7 is still
present, but it is not used, because of the priorities mentioned above. At the same
time, we check whether or not any nonterminal symbol from N; is still present: the
rules A — { are available and no other rule using symbols from N, can be used; if
any rule A — 1 can be applied, then it has to be applied.)

— each rule of type 14 has priority over cZ — ct;
(If a symbol X' is present, then this means that the computation is finished; we
replace this symbol with the corresponding string A(x;) and we remove the “semi-
trap” object Z; the rule ¢Z — ¢t cannot be used.)

From the previous explanations, it is easy to see that each derivation in G can be
simulated by a computation in Il and, conversely, each computation in II corresponds to
a derivation in G. It is worth mentioning that this is possible because we deal with a lan-
guage over the one-letter alphabet, hence the order of symbols appearing in a sentential
form of G is not important, only their presence matters (exactly as in a multiset). More-
over, at each moment when an occurrence of a is introduced, it is introduced directly into
the output membrane. Nothing else can reach the output membrane. If the derivation is
not correctly simulated or it is not terminal, then at least a rule can be further applied,
in particular, the rule — 7 if this symbol was produced. Thus, we can conclude that,
because L(G) = L(Q), we have N(II) = Q. O

In the previous construction we have paid no attention to the propagating feature,
but this can be easily done: just add a dummy object # which never evolves (and does
not enter the output membrane) to the right hand member of each rule which diminishes

21

the number of objects: ¢cD — c and Z — A, as well as to rules X' — h(xs) of type 14, if
z9 = A. Note also that we never dissolve a membrane, hence this feature is useless in this
case.

It is also easy to see that we can generate recursively enumerable relations with
transition P systems of degree 2 as those used above: a relation Q C N is char-
acterized by the language P(()) obtained as the permutation closure of the language
{a7*...ap* | (n1,...,nk) € Q}; starting from a matrix grammar with appearance check-
ing for P(Q®), the construction above gives a transition P system for) (the important
observation is again that the order of symbols in the strings of P(Q) is not relevant, hence
we can work with multisets instead of strings).

We do not know which of the inclusions in the diagram in Figure 5 are proper (but at
least one should be, because Ls(F0L) is strictly included in RE).

8 P Systems Based on Rewriting

Transition P systems can be interpreted as using no data structure for codifying the
information: the numbers are encoded as the cardinality of multisets, hence they are
represented in the base one. This can be adequate to a biochemical implementation, but
it looks inefficient from a classic point of view. Moreover, in this way we can deal only
with problems on numbers, not (directly, without a number codification) with symbolic
computations. That is why we look now for representing information by using a data
structure of a standard type, strings.

Thus, from now on, instead of objects of an atomic type (i.e., without “parts”), we
consider objects which can be described by finite strings over a given finite alphabet.
The evolution of an object will then correspond to a transformation of the string. In
this section we consider transformations in the form of rewriting steps, as usual in formal
language theory.

Consequently, the evolution rules are given as rewriting rules.

Assume that we have an alphabet V. A usual rewriting rule is a pair (u,v) of words
over V (we give it in the form u — v). For z,y € V* we write v = y iff © = zuzy and
Y = T10To, for some strings x1, o € V*.

Here, the rules are also provided with indications on the target membrane of the pro-
duced string (we do no longer consider the membrane dissolving action, because, similarly
to the case of Theorem 1, it will not be necessary in order to obtain computational com-
pleteness; of course, if for other purposes it will be useful /necessary to use this action,
then it can be introduced in the same way as in the transition P systems). Always we use
only context-free rules. Thus, the rules are of the form

X — v(tar),

where tar € {here, out, in;} (“tar” comes from “target”, j is the label of a membrane),
with the obvious meaning: the string produced by using this rule will go to the membrane
indicated by tar.

22

Note the important difference from the way the transition P systems work: a string is
now a unique object, hence it passes through membranes as a unique entity, its symbols
do not follow different itineraries, as it was possible for the objects in a multiset; of course,
in the same region we can have several strings at the same time.

In this way, we obtain a language generating mechanism of the form

II= (Va M, Lla .. '7Lna (Rlapl)a LRI (Rnapn)ai())a

where V' is an alphabet, i is a membrane structure, L4, ..., L, are finite languages over
V, Ry, ..., R, are finite sets of context-free evolution rules of the form X — v(tar), with
X € V,u € V*, tar € {here,out} U {in; | 1 < j < n}, p1,...,p, are partial order
relations over Ry, ..., R,, and iy is the output membrane. (Note that such a system is a
non-cooperative one.)

We call such a system a rewriting P system.

The language generated by a system II is denoted by L(II) and it consists of all strings
placed in the output membrane at the end of halting computations. A computation is
defined in a way similar to that in Section 5, with the differences specific to an evolution
based on rewriting: we start from the initial configuration of the system and proceed
iteratively, by transition steps done by using the rules in parallel, to all strings which
can be rewritten, obeying the priority relations, and collecting the strings generated in a
designated membrane, the output one.

Note that each string is processed by one rule only, the parallelism refers here to
processing simultaneously all available strings by all applicable rules. If several rules can
be applied to a string, maybe in several places each, then we take only one rule and only
one possibility to apply it and consider the obtained string as the next state of the object
described by the string. It is important to have in mind the fact that the evolution of
strings is not independent to each other, but interrelated in two ways: (1) if we have
priorities, a rule r; applicable to a string = can forbid the use of another rule, ry, for
rewriting another string, y, which is present at that time in the same membrane; after
applying the rule 7, if r; is not applicable to y or to the string z’ obtained from z by
using 71, then it is possible that the rule ro can now be applied to y; (2) even without
priorities, if a string x can be rewritten forever, in the same membrane or on an itinerary
through several membranes, and this cannot be avoided, then all strings are lost, because
the computation never stops, irrespective of the strings collected in the output membrane
and which cannot evolve further.

Remark 4. It is worth noting the similarities and, mainly, the differences between
rewriting P systems and parallel communicating grammar systems with communication
by queries ([26]) or by command ([8]). Both kinds of systems are distributed parallel
devices, making an essential use of communication. In the grammar systems case, the
component grammars work synchronously and send to each other sentential forms. Here,
the synchronization is not obligatory, a component membrane can wait if its rules, if any,
are not applicable. More important: the components of a grammar system are always the
same, are arranged in the same level, and they can communicate to each other without

23

restrictions (a total graph is available as a communication graph); here the components
can be hierarchically arranged in a specified architecture and they can disappear during
the computation. Still, the two types of mechanisms meet each other in the generative
power: also the parallel communicating grammar systems characterize the recursively
enumerable languages, both when communicating by queries ([10]) and by command ([8],
[16]). As a common conclusion we can state the fact that communication is very powerful,
irrespective of the ways it is done.

A similar comparison holds true with networks of language processors, as introduced in
[9] as a generalization of parallel communicating grammar systems: both output and input
filters are provided for each component of the system, controlling the flow of strings. Such
filters could be considered also in the case of membranes, as a substitute for the target
indications given by the evolution rules. (They could be a more adequate model of the
membrane selectivity due to porosity or to proteine channels present in it.) O

We denote by RP,(Pri) the family of languages generated by rewriting P systems of
degree at most n,n > 1, using priorities; when priorities are not used, we replace Pri with
nPri; the union of all families RP, («) is denoted by RP(«), o € {Pri, nPri}.

Because we will use below the notion of an ETOL system, we briefly introduce it: such
a system is a construct G = (V,T,w, P,,..., P,), such that each (V,T,w, P;),1 <i < n,
is an EOL system. One step of a (parallel) derivation with respect to P; is denoted by
—; and defined as for EOL systems. The language generated by G is L(G) = {z € T* |
W =y W =y, ... =, Wi = 2, for some 1 < i; < n,1 <j < k}. The family of
languages generated by ETOL systems is denoted by ET0L.

By ORD we denote the family of languages generated by context-free ordered gram-
mars (that is, context-free grammars with a partial order relation on the set of rules; a
rule can be applied only when no rule of a higher priority can be used).

It is known that ET0L C ORD C RE.

Theorem 2. The relations in the diagram in Figure 5 hold, where the arrows indicate
inclusions which are not necessarily proper; the inclusion CF C RPy(nPri) is proper.

Proof. The inclusions between the RP families follow from the definitions.
The equality CF = RP;(nPri) can be proved in the following way:
For a context-free grammar G = (N, T, S, P), we construct the rewriting P system

M= (NUT,[,],,{S}, (PU{A— A| A€ N},0),1).

A computation is finished only when no rule A — A is applicable, which means that no
nonterminal symbol is present in the obtained string, hence the computation corresponds
to a terminal derivation in G.

Conversely, let II be a rewriting P system of degree one over some alphabet V. Let P
be the set of all rules appearing in II and Ly be the finite set of all strings initially present
in the system. Denote by T the set of symbols a € V' such that no rule a — x is in P and
by N the set (V —T)U{S}, where S is a new symbol. A symbol A € V — T for which
there is no derivation with respect to P of the form A =—* w with w € T* is said to

24

be poisoned (there are rules A — x for these symbols, but they never lead to a string of
terminals). If there is a string in Ly which contains a poisoned symbol, then L(II) = (). In
the opposite case, the context-free grammar G = (N, T, S5,{S — = | x € Lo} U P) clearly
generates the language L(IT) (all strings in Ly lead to strings in 7).

By adding a partial order relation, we obtain in the same way the equality ORD =
RP,(Pri) (the set of poisoned symbols is defined independently of the order relation
among rules: if a rule cannot be applied because a rule with a higher priority is applicable
to a non-poisoned symbol, it will be applied later, when the non-poisoned symbol is
replaced by a terminal one).

The inclusions RE C RP3(Pri) and M AT C RP(nPri) are proved in the following
two lemmas.

The fact that the family RP,(nPri) contains non-context-free languages is proved by
the following rewriting P system:

II= ({A7 B7 a, b7 C}, [1[2]2]17 (Z)’ {AB}7 (Rla (Z)): (RQ, (2))7 2)7

R, = {B — ¢B(iny)},

Ry = {A — aAb(out), A — ab, B — c}.
It is easy to see that L(I1) = {a™b"c" | n > 1} (if a string a’Ab'¢'B is rewritten in
membrane 2 to a’Ab'c'*! and then to a*t! A"ttt and sent out, then it will never come

back again in membrane 2, the computation stops, but the output membrane will remain
empty). This is not a context-free language. O

RE = RP(Pri) = RPs(Pri)

RP(an')/
I RP,(Pri)
RP;(nPri)
MAT I ORD = RP,(Pri)

RPy(nPri) -~
I ETOL
el

CF = RP,(nPri)

Figure 5. The hierarchies of RP, («) families.

Lemma 3. (The Computational Completeness Lemma for Rewriting P Systems)
RE C RP;(Pri).

25

Proof. Let G = (N, T, S, M, F) be a matrix grammar with appearance checking in the
normal form mentioned at the beginning of the proof of Lemma 2. For each matrix of
type 4 (X — x1, A — x5), with z1,2o € T*, we also introduce the matrix (X — X'z,
A — x5), which is considered of type 4'; we also add the matrices (X’ — \A); X' is a new
symbol associated with X. Clearly, the generated language is not changed. We assume
the matrices of the types 2, 3, 4, 4’ labeled in a one-to-one manner with my, ..., m.

We construct the following rewriting P system:

IT = (V, u, L1, Lo, L3, (R, p1), (R, p2), (B3, p3),2),
V=NMUNU{E Z{}UTU{X;,X]| X € N;,1<i<k},
1=l Lols s
L, = {XAE}, for (S — X A) the initial matrix in M,
Ly = L3 =0,
Ri={ro:a—a|laeV -T,a+#FE}
U{ro: E— A(ing), T — T}
U {X — Yi(ing) | m; : (X = Y, A — z) is a matrix of types 2 or 4}
U {X = Yi(ing) | m; : (X = Y, A — 1) is a matrix of type 3}
U{X = X]z1(ing), X/ =X |m;: (X = X'z, A — 19)
is a matrix of type 4'}
U{y;=Y, Y >Y|YeN,1<i<k},
pr={ra>10|a €V -Ta+E},
Ry ={ri: Y, =Y, ri: A— z(out) |m;: (X = Y,A— x)
is a matrix of types 2 or 4}
U{ri: X] = X, ri: A— xo(out) | m;: (X = X'z, A — 13)
is a matrix of type 4'}
p2 = {ri > rj | i # j, for all possible i, j},
Ry = {pi: Yi— Vi, V! = Vi, gl + A — flout) | mi s (X =V, A = 1)
is a matrix of type 3}
U {po: E — E(out)},
ps = {p! > pi, pi > po | for all possible i}.

The system works as follows. Observe first that the rules @ — « from membrane 1
change nothing, can be used forever, and prevent the use of the rule £ — A, which sends
the string to membrane 2, the output one.

Assume that in membrane 1 we have a string of the form XwFE (initially, we have
here the string X AF for (S — X A) € M). In membrane 1 one chooses the matrix to be
simulated, m;, and one simulates its first rule, X — Y, by introducing Y;; the string is
sent to membrane 2 if we deal with a matrix of types 2 or 4 (without a rule which has to

be applied in the appearance checking mode), and to membrane 3 if we have to simulate
a matrix of type 3.

26

In membrane 2 we can use the rule Y; — Y, forever. The only way to quit this
membrane is by using the rule A — z appearing in the second position of a matrix of
type 2 or 4. Due to the priority relation, this matrix should be exactly m; as specified by
the subscript of Y;. Therefore, we can continue the computation only when the matrix is
correctly simulated.

The process is similar in membrane 3: The rules ¥; — Y)Y/ — Y; can be used
forever. We can quit the membrane either by using a rule A — f(out) or by using the rule
E — E(out). In the first case the computation will never halts. Because of the priority
relation, such a rule must be used if the corresponding symbol A appears in the string. If
this is not the case, then the rule ¥; — Y; can be used. If we now use the rule Y/ — Y,
then we get nothing. If we use the rule E — E(out), and this is possible because Y; is no
longer present, then we send out a string of the form Y/wE.

In membrane 1 we replace Y; or Y;' by Y, and thus the process of simulating the use
of matrices of types 2, 3, 4 can be iterated.

A slightly different procedure is followed for the matrices of type 4'; they are of the
form m; : (X — X'zy, A — x3). In membrane 1 we use X — X/z,(iny), which already
introduces the substring z;, and the string arrives in membrane 2. Again the only way
to leave this membrane is by using the associated rule A — x9(out). In membrane 1 we
have to apply X — A. If no symbol different from E and terminals is present, then we
can apply the rule E — A(ing). Thus, a terminal string is sent to membrane 2, where no
rewriting can be done, the computation stops. If any nonterminal symbol is still present,
then the computation will never halt, because of the rules & — a from membrane 1.

Therefore, we collect in the output membrane exactly the terminal strings generated
by the grammar G, that is L(G) = L(II). O

Lemma 4. MAT C RP(nPri).

Proof. Let G = (N,T,S, M) be a matrix grammar without appearance checking.
Assume that G is in the normal form used also in the proofs above (this time, the matrices
of type 3 are missing), with the matrices labeled in a one-to-one manner. We construct
a rewriting P system II in the following way. In the skin membrane we introduce the
initial string X AE, where E is a new symbol and (S — X A) € M, and rules of the form
X — z(in;) for each matrix m; : (X — 2,A — z) in M, terminal or not. A membrane
with the label ¢ will contain the unique rule A — z(out). In this way, the use of matrices
is correctly simulated by the way the strings are circulated among membranes. Note that
if we do not use the rule of membrane 2, then we cannot leave the membrane, hence the
output membrane will remain empty. A special membrane, labeled with O, is the output
one; in this membrane we put all the rules A — A, for A € N;UN;. In the skin membrane
we also consider the rule E — A(ing). It can send a string to the output membrane in
any moment, but the computation halts only if the string is terminal. The details of this
construction are left to the reader. It is obvious that we have L(IT) = L(G). a

Several problems are open in this area: Is the hierarchy RP,(nPri) an infinite one?
Is the result RE C RP3(Pri) optimal? Is the inclusion M AT C RP(nPri) proper?
(The difficulty in proving that RP(nPri) C MAT lies in the dependence between the

27

evolution of the words initially placed in a rewriting P system: even if a string has reached
the output membrane and it cannot further evolve, in order to accept it we have to make
sure that no other string present in the system can further evolve. This can easily be
controlled in a matrix grammar with appearance checking, but we see no way to do it
without appearance checking.)

9 Splicing P Systems

We now relate the idea of computing with membranes to another important natural com-
puting area, that of DNA computing. Specifically, we consider P systems with objects in
the form of strings and with the evolution rules based on the splicing operation introduced
in [15]. We first define this operation.

Consider an alphabet V and two symbols #,$ not in V. A splicing rule over V is a
string r = uy #FusSuz#uy, where uy, uo, us, uy € V*. For such a rule r and for z,y, w € V*
we define

(z,y) Frw iff = =xiuiuse, Y= y1usUsye,

W = T1U1U4Y2, for some x1,Z2,Y1,Y2 € V*

(One cuts the strings z, y in between uy, uy and ug, uy, respectively, and one concatenates
the “first half” of x with the “second half” of y.) We say that we splice the strings z,y
at the sites uqus, usuyg, respectively. When r is understood, we write F instead of .. For
clarity, we usually indicate by a vertical bar the place of splicing: (z1u1|us®s, y1us|usys)
T1U1U4Y2-

Based on this operation, language generating devices were introduced: start from a
given set of strings and apply to them iteratively the splicing rules from a given set.
We obtain what is called an H system. If a terminal alphabet is considered, then we
obtain an ertended H system. It is known that extended H systems with finite sets of
axioms and finite sets of rules characterize the regular languages and that systems with
certain controls on the use of rules or with certain distributed architectures characterize
the recursively enumerable languages. Comprehensive details can be found in [22].

Because we need a string-to-string transformation, we shall consider here a variant of
the relation |, as a binary relation.

Specifically, with each splicing rule r = u;#us$us#us over a given alphabet V' we
associate a string z € V*. For z,y € V* we write

T =) y iff either (z,2) k. y or (2,2) -, y.

When (r, 2) is understood, we write simply = instead of =,).
Such transformations can be used for defining transitions in P systems with string-
objects.

A splicing P system (over a given alphabet V') is a P system II with strings as objects,
with evolution rules given in the form (r, z)tar, where r is a splicing rule over V, z € V*,

28

and tar is a target indication for the resulting string, one of here, out, in;. (As usual,
the indication here will be omitted when writing a system.) With respect to such a
rule we define a relation © =, ,) y(tar) as mentioned above. Using this relation, we
define the transition between configurations, taking into consideration also a possible
priority relation among evolution rules. (We do not provide the membrane dissolving
action, because it is again not necessary for obtaining computational completeness.) A
computation is correctly finished in the same conditions as in the previous sections: no
further move is possible, one elementary membrane is designated as the output one. The
language generated by II is the set of strings placed in the output membrane at the end
of correctly finished computations.

We denote by SP,(Pri) the family of languages generated by splicing P systems of
degree at most n,n > 1, using priorities; when priorities are not used, we replace Pri with
nPri; the union of all families SP,(«) is denoted by SP(«), « € {Pri, nPri}.

We also denote by E'H the family of languages generated by extended splicing systems
with finite sets of axioms and of splicing rules, and by EH (Ord) the family of languages
generated by extended splicing systems with finite sets of axioms and of splicing rules and
with a priority on the set of rules (we use a splicing rule for splicing two strings only if
no rule with a higher priority can be used for splicing these strings).

It is known that EH = REG and EH(Ord) = RE.

Rather expected, in view of the results from the previous sections and from [22], we
have the following result:

Theorem 3. The relations in the diagram in Figure 6 hold, where the arrows indicate
inclusions which are not necessarily proper; the family SPy(nPri) contains non-reqular
languages, while SP3(nPri) contains languages which are not in the family MAT.

Proof. The inclusions follow from the definitions. The equality EH(Ord) = RE (see
the proof of Theorem 8.3 in [22], for checking that the halt condition from splicing P
systems is fulfilled by the ordered extended splicing system constructed for simulating a
given type-0 grammar) implies the collapse of the hierarchy SP,(Pri) at its first level.

29

EH(Ord) = SP,(Pri) = SP(Pri)
= RE = SPy(nPri) = SP(nPri)

SP3(nPri)

A

SPy(nPri)

SP;(nPri)

Figure 6. The hierarchy of families SP,(c).

The inclusion RE C SP,(nPri) is proved in the next lemma.
In order to show that SP,(nPri) contains non-regular languages, let us consider the
system:

IT = ({CL, ba d}a [1[2]2] 17 {dabd}7 07 (RI: @)a (RQ: @)a 2)7
Ry = {(da#Z$d#a,daZ)iny},
Ry = {(b#d$Z#bd, Zbd)out, (b#d$Z#b, Zb)}.

It is easy to see that strings of the form da™b"d (initially, we have n = 1) get one
more occurrence of a in the skin membrane, are passed to the output membrane, here one
more occurrence of b is added, the process is iterated, and, at any moment, in the output
membrane we can use the rule b#d$Z#b and the right hand occurrence of the symbol d
is removed. No further splicing is possible, hence the computation is correctly finished.
Consequently, we get

L(IT) = {da"™b"™ | n > 2}.

This is not a regular language.
For the similar assertion SPs;(nPri) — M AT # () we use the following system:

II= ({a7 b’ Cy X’ Y7 Z}’ [1[2]2[3]3]1’ {XabY}, @, (Z)’ (Rla @), (R2a @), (R3a 0)7 3)a
Ry = {(X#Z$Xa#, X Z)iny, (X#Z$Xb#, X Z)ins,
(cH#Z3Xb#, cZ)ing, (c#HZSc#,cZ)},
Ry = {(#Y$Z#aaY, ZaaY)out},
Ry = {(#YS$Z#bY, ZbY)out}, (#YS$Z+#c, Zc), (X#Z$X#,X7Z)}.
Assume that we have a string of the form Xa’ba’Y in membrane 1; initially, we have

i=1,7=0. Ifi > 1, then we have to use the rule X#Z$Xa# and the string Xa'~1ba’Y
is sent to membrane 2. There is only one rule here, hence we get the string Xa‘~'ba’*2Y’,

30

which is sent back to membrane 1. In this way, we will eventually obtain the string
Xba’T2Y . If we use the rule X#Z$Xb#, then we obtain the string Xa’**Y which is
sent to membrane 3. If we use the rule #Y $Z4c, then we obtain the string X a’*%¢ which
will remain in membrane 3 and can be processed forever by using the rule X#Z$X. The
only way to continue in such a way that the computation will be successfully finished is
to use the rule #Y $Z4bY; the obtained string Xa’T2bY is returned to membrane 1 and
the process is iterated. In this way, the number of occurrences of a is doubled at each
passing of the string through membrane 3.

When in membrane 1 we have a string Xba’Y, then we can also use the rule c#Z$Xb#,
the marker X is replaced with ¢ and the string is sent to membrane 3. If we apply here
the rule #Y $Z#bY , then the string ca’bY” arrives in membrane 1 and it will be processed
forever by using the rule c#Z$c#. Thus, in order to halt, in membrane 3 we have to use
the rule #Y $Z#c, that is we get the string ca‘c. No further rule can be applied.

In conclusion, we obtain the language L(II) = {ca®'¢ | n > 1}, which is not in the
family M AT: each one-letter language in M AT is regular, see [14], and L(II) can be
mapped to the non-regular language {a®>" | n > 1} by a morphism; M AT is closed under
morphisms, see [11]. O

Lemma 5. (The Computational Completeness Lemma for Splicing P Systems) RE C
SPy(nPri).

Proof. Let G = (N, T, S, P) be a type-0 Chomsky grammar. Assume that N U7T =
{D:,...,D,} and take a further symbol, B, also denoted by D, ;.

We construct the following splicing P system (of degree 4 and without priorities):

II= (V7 22 L17 L27 L37 L47 (R17 0): (R27 Q))a (R?n m)a (R47 Q))a 4)7

V={NUTU{Z B}U{X,;,)Y;|0<i<n+1},

B= [1[2]2[3]3[4]4]17

Li=Ly=1L,=0,

Ly, = {XSBY},
U {(X#Z$X #, X Z)ing, (#BY$Z#BY', ZBY")in,,

(#Y”$Z#’ Z)in47 (# T $Z#Ta ZT)}a

Ry = {(#uY$Z#vY, ZvY) | u — v is a rule from P}
U {(#D;YSZ#Y;, ZY;)out, (#Y;$Z#Y; 1,2Y; 1)out |1 <i<n+ 1}
U {(#D;YSZ#Y,, ZY)out | D; e TU{B},1<i<n+1}
U {(#Y/$Z#Y] |, ZY; 1)out) |1 <i<n+1}

2

(
(
(
U {(#Yo8Z#1, Zt)out},
(
(
(

((HYoSZ4Y, ZY out, (#Y!SZ#Y', 7Y out, (#BYISZ#Y", Z7Y")out}
{(#Yi$Z#1, Z1)out, (#Y/$Z#1, Zt)out |1 <i<n+1},

R

C

31

The system works as follows. There is only one string in the initial configuration
(namely, in membrane 2), X BSY, which introduces the axiom of G, together with the
new symbol B, and the end markers X, Y. Therefore, always we will have only one string
in the system.

Assume that we have a string of the form XwY in membrane 2. If we apply a splicing
rule #uY $Z#vY, then we simulate the use of a rule from P at the end of the string,
Xw'vY = Xw'vY, and this corresponds to w'u = w'v (modulo an occurrence of B in
the string w') in G. The string remains in membrane 2.

If we perform a splicing

(Xw'|D;Y, Z|Y;) F Xuw'Y,

for some 1 = 1,2,...,n+ 1, then the string exits the membrane. In the skin membrane,
we have only the possibility to use a splicing rule of the form X;D;#Z$X#. In this
way, we get a string X;D;w'Y;, which is again passed to membrane 2. Here, we have to
decrease by one the subscript of the right end marker. The obtained string, X;D;w'Y; 4
is sent to the skin membrane, where the subscript of the left end marker is decreased by
one; the obtained string is sent to membrane 2 and the process is repeated. When in
membrane 2 we get X, D;w'Y), this string is again passed to the skin membrane; if £ = 1,
then the rule X#Z$X,# is used here and the resulting string is passed to membrane
3. Only strings with the subscript of Y equal to zero can be processed in membrane 3
without introducing the trap-symbol 1 in the currently produced string (once introduced,
this symbol will be processed forever in the skin membrane by the rule # T $Z#7, hence
the computation can never be finished; note that the string is of the form Xwf, hence no
other rule but # t $Z#7 can be used in the skin membrane; using this rule, we do not
change the string: (Xw|t, Z|t) F Xwt). If the string X, D,;w'Y) is passed from membrane
2 to the skin membrane and k& > 2, then the rule X;_#Z3$X,+# is used and the string
Xip—1Djw'Yy, with £ —1 > 1, is sent to membrane 2. The only rule in membrane 2 which
can be applied is #Y,$Z# 1, which introduces the trap-object . The computation is never
terminated.

If a string X, D;w'Y}, with k£ > 1 is produced in membrane 2 and sent to membrane 1,
here we can only apply the rule X# Z$X;# and the string X D;w'Y}, is sent to membrane
3. No rule but #Y;$Z#7t is here applicable, hence the computation never terminates.

Consequently, in order to finish correctly the computation, the subscripts of the end
markers have to reach the value zero at the same time, that is, 7 = j. This means that
the symbol D; which was cut from the right hand end of the string has been reproduced
in the left end of the string. Note that the symbol B can be moved from an end of the
string to the other one like any symbol from N UT.

In this way, the string is circularly permuted, making possible the simulation of rules
of G in any position. In each moment, there is exactly one occurrence of the symbol B,
indicating the beginning of the sentential form of G simulated by our system: if in II we
have generated the string Xw; Bw,Y', then the string wow, is a sentential form of G, and
conversely.

32

When the rule #BY $Z#BY" is used in the skin membrane, the resulting string, of
the form XwBY’ is sent to membrane 2; no simulation of a rule in P is possible from
now on, but only circular permutations. Such circular permutations can be performed as
above, using the primed right end markers Y; instead of Y;,0 < i < n+ 1. However, it is
important to note that only symbols which are terminal with respect to G can be moved.
In any moment when in membrane 3 we have a string of the form XwBY] (received from
the skin membrane), we can choose to replace BY; by Y". The fact that B is in the
right hand end of the string tells us that w is a sentential form of G (in a non-permuted
form). Moreover, because B is again in the right hand end, this implies that at least
one circular permutation of the string wB has been done since Y’ has been introduced,
that is, the string w is terminal. The obtained string, Xw, is sent to membrane 4, where
the left marker is removed. No rule can now be applied, the computation stops with the
output w. Because we know that this string can be generated by G, we have the equality
L(G) = L(1I). a

We do not know whether or not the degree of the system in this lemma can be further
decreased.

If we provide a splicing P system II with a terminal alphabet 7" and we define the
language generated as consisting of all strings over 7" collected in the output membrane
at the end of halting computations, then systems of degree three can characterize the
recursively enumerable languages: in the proof of Lemma 5, membrane 4 is no longer
necessary, while membrane 3 can be considered the output one (a rule able to remove
X1 B in the skin membrane and a rule for removing Yj in the output membrane should
be considered). We can formulate this observation also in the following form:

Corollary 1. FEach recursively enumerable language L C T* can be written in the
form L =L'NT*, where L' € SP3(nPri).

10 Final Remarks

We have introduced a new computability model, called a P system, based on the evolution
of objects in a membrane structure. It uses the architecture of a chemical abstract ma-
chine in the sense of [4], with the rules inspired from the I'-systems of [3], provided with
extra features concerning the paths of objects through membranes and the possibility of
dissolving membranes. The objects can be single symbols, or strings of symbols; in the
latter case, the evolution is defined in terms of string transformations. We have considered
here rewriting and splicing as underlying operations with strings. In all three cases, basic
(transition) P systems, rewriting P systems, and splicing P systems, we obtain computa-
tional completeness, characterizations of recursively enumerable sets of natural numbers
(of relations, too) and of recursively enumerable languages by systems of a rather simple
form.

From the proofs of these results we can draw an important observation: the compu-
tational completeness is obtained without making use of the synchronized evolution of
objects and membranes. Synchronization, in the sense of an universal clock, is assumed

33

in the definition of transitions in P systems, but it does not appear in the proofs of the
three computational completeness lemmas: in the case of transition P systems we have
only one working membrane, in the case of rewriting and splicing P systems we always
have only one string in the system, hence the synchronization has no object. (We can
restate this by saying that a separate clock for each membrane suffices.)

On the other hand, in the proofs we have simulated the sequential computations done
by various types of (matrix) grammars in the framework of P systems, thus losing the
central attractive feature of these systems, the parallelism. These proofs are a way to
clarify the power of P systems, but not to implement algorithms by starting from a
sequential representation of them (e.g., a Turing machine). Direct constructions of P
systems carrying out given tasks should be found.

Many open problems and research topics were formulated and still many further ques-
tions naturally arise in this framework. We only mention some of them. Of definite inter-
est is to consider deterministic P systems, having in each moment at most one possible
transition. This might be important in the case that such devices would be implemented
in “reliable” media, which behave deterministically. Of course, in biochemical-like media,
where a huge parallelism is possible, the nondeterminism could be useful, because by
using it we can simulate the deterministic parallelism (with a high probability, working
nondeterministically on a large number of “processors” we can get the result of a parallel
exploration of the search space).

We have considered above that when a membrane is dissolved, only the objects survive,
the rules of the former membrane are lost. This, of course, can be changed. Moreover, in
the same way as the objects evolve, we may assume that also the rules evolve; for instance,
we can allow also to rules to move from a membrane to another one. Still more: also the
membranes can evolve, not only by disappearing under the influence of certain object
evolution rules, by also in other modes. Creating new membranes can be done either by
usual action rules (instead of a symbol ¢, consider a symbol 7x, with the meaning “create a
new membrane, labeled with X”) or by membrane evolution rules (duplication, separation
in two distinct membranes, etc.) Some technical problems appear here, concerning the
contents of the new membranes, the objects and the rules to be put into them (certain
“Inheritance principles” should be considered). A small jungle of variants can be produced
in this way.

We finish by stressing again the importance of parallelism in P systems, appearing at
two levels in transition and splicing P systems and, possibly, at three levels in rewriting
P systems: we can also use the rules in parallel in the sense of Lindenmayer systems
(each symbol of a string which can be rewritten should be rewritten; then, all strings are
rewritten simultaneously, in all membranes of the system). The influence of parallelism
on the time complexity of computations in P systems is a question of a basic interest.
It is highly conceivable that when rules for producing new membranes are provided,
by creating an exponential number of membranes, an essential speed-up can be obtained
(perhaps, even polynomial time computations, done in parallel, of solutions to exponential
problems).

An important problem, not mentioned in the formal framework above, concerns the

34

possibility of implementing P systems, either in electronic media or in biological media.
A related, double, problem is (1) to find specific computing problems which can be solved
in this way, and (2) to find natural processes (for instance, biological) which can be
considered as counterparts of membrane structures we used here, or, at least, similar to
the operations used in our P systems (for instance, moving objects through membranes
in a well specified manner, dissolving membranes — producing “holes” in them, etc.). The
answer to such questions can direct the theoretical studies to the most promising and
practically relevant direction.

Notes. This work was supported by the Academy of Finland, Project 137358. Useful
discussions with J. Dassow, H. Fernau, M. Holzer, A. Mateescu, 1. Petre, K. Reinhardt,
G. Rozenberg, and A. Salomaa are gratefully acknowledged. Many thanks are due to an
anonymous referee for many useful remarks on an earlier version of this paper.

A preliminary version of this paper has been circulated on Internet in November 1998,
as TUCS Technical Report No 208 (www.tucs.fi). Several continuations are now (June
1999) available, some of them answering questions suggested above. For the reader con-
venience, all known titles are mentioned at the bibliography. We emphasize some of
these titles: [18], [35] deal with implementations of various types of P systems on usual
computers, [20] considers the case when the communication is controlled by electrical
polarization (but a further operation on membranes is also used, of inhibiting all comuni-
cations through a membrane), [21] introduces the operation of membrane division (SAT,
the satisfiability of propositional formulas in the conjunctive normal form, one of the most
notoriouos NP-complete problem, is then solved in linear parallel time; as expected, the
result is obtained on the expense of using an exponential space; such a space-time trade-
off is known — and accepted — in Natural Computing, e.g., in DNA Computing), [31], [24]
deal with normal forms of the membrane structures, [32] discusses a connection between
P systems and the ambient calculus of [6], [5], while [13] extends the notion of a P system
to arrays and graphs.

References

[1] L. M. Adleman, On constructing a molecular computer, in DNA Based Computers,
Proc. of a DIMACS Workshop, Princeton, 1995, Amer. Math. Soc., 1996 (R. J.
Lipton, E. B. Baum, eds.), 1-22.

[2] M. Amos, DNA Computing, PhD Thesis, Univ. of Warwick, Dept. of Computer Sci.,
1997.

[3] J. P. Banatre, A. Coutant, D. Le Metayer, A parallel machine for multiset transfor-
mation and its programming style, Future Generation Computer Systems, 4 (1988),
133-144.

[4] G. Berry, G. Boudol, The chemical abstract machine, Theoretical Computer Sci., 96
(1992), 217-248.

35

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]
[19]

L. Cardelli, Abstractions for mobile computation, in Secure Internet Programming (J.
Vitek, Ch. Jensen, eds.), Lecture Notes in Computer Science, 1603, Springer-Verlag,
1999.

L. Cardelli, A. Gordon, Mobile ambients, in Proceedings of FoSSaCS’98 (M. Nivat,
ed.), Lecture Notes in Computer Science, 1378, Springer-Verlag, 1998, 140-155.

E. Csuhaj-Varju, J. Dassow, J, Kelemen, Gh. Paun, Grammar Systems. A Grammat-
ical Approach to Distribution and Cooperation, Gordon and Breach, London, 1994.

E. Csuhaj-Varju, J. Kelemen, Gh. Paun, Grammar systems with WAVE-like com-
munication, Computers and Al 15, 5 (1996), 419-436.

E. Csuhaj-Varju, A. Salomaa, Networks of parallel language processors, in New
Trends in Formal Languages. Control, Cooperation, Combinatorics (Gh. Paun, A.
Salomaa, eds.), Lecture Notes in Computer Science, 1218, Springer-Verlag, 1997,
299-318.

E. Csuhaj-Varju, G. Vaszil, On the computational completeness of context-free PC
grammar systems, Theoretical Computer Sci., 215, 1-2 (1999), 348 — 358.

J. Dassow, Gh. Paun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, Berlin, 1989.

J. Dassow, Gh. Paun, On the power of membrane computing, J. of Universal Com-
puter Sci., 5, 2 (1999), 33 — 49 (www.iicm.edu/jucs).

F. Freund, Generalized P systems, Proc. of FCT’99 (G. Ciobanu, Gh. Paun, eds.),
Lecture Notes in Computer Science, 1684, Springer-Verlag, 1999.

D. Hauschildt, M. Jantzen, Petri nets algorithms in the theory of matrix grammars,
Acta Inform., 31 (1994), 719-728.

T. Head, Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors, Bull. Math. Biology, 49 (1987), 737-7509.

L. Tlie, A. Salomaa, 2-testability and relabeling produce everything, J. of Computer
and System Sciences, 56 (1998), 253—262.

R. J. Lipton, Speeding up computations via molecular biology, in DNA Based Com-
puters, Proc. of a DIMACS Workshop, Princeton, 1995 (R. J. Lipton, E. B. Baum,
eds.), Amer. Math. Soc., 1996, 67-74.

M. Malita, Membrane computing in Prolog, manuscript, 1999.

V. Manca, String rewriting and metabolism: A logical perspective, in Computing with
Bio-Molecules. Theory and Experiments (Gh. Paun, ed.), Springer-Verlag, Singapore,
1998, 36-60.

36

[20] Gh. Paun, Computing with membranes. A variant, submitted, 1999, and Auckland
University, CDMTCS Report No 098, 1999 (www.cs.auckland.ac.nz/CDMTCS).

[21] Gh. Paun, P systems with active membranes: Attacking NP complete problems,
J. Automata, Languages and Combinatorics, to appear, and Auckland University,
CDMTCS Report No 102, 1999 (www.cs.auckland.ac.nz/CDMTCS).

[22] Gh. Paun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing Paradigms,
Springer-Verlag, Heidelberg, 1998.

[23] Gh. Paun, G. Rozenberg, A. Salomaa, Membrane computing with external output,
submitted, 1999, and Turku Center for Computer Science, TUCS Report No 218,
1988 (www.tucs.fi).

[24] Gh. Paun, Y. Sakakibara, T. Yokomori, P systems on graphs of restricted forms,
submitted, 1999.

[25] Gh. Paun, A. Salomaa, eds., Grammatical Models of Multi-Agent Systems, Gordon
and Breach, London, 1998.

[26] Gh. Paun, L. Santean, Parallel communicating grammar systems: the regular case,
Ann. Univ. Buc., Matem.-Inform. Series, 38, 2 (1989), 55—63.

[27] Gh. Paun, G. Thierrin, Multiset processing by means of systems of fi-
nite state transducers, Workshop on Implementing Automata WIA99, Pots-
dam, August 1999, and Awuckland University, CDMTCS Report No 101, 1999
(www.cs.auckland.ac.nz/CDMTCS).

[28] Gh. Paun, T. Yokomori, Membrane computing based on splicing, Fifth Intern. Work-
shop on DNA Based Computers, DNAS5, MIT, 1999.

[29] Gh. Paun, T. Yokomori, Simulating H systems by P systems, Journal of Universal
Computer Science, 5 (1999), to appear (www.iicm.edu/jucs).

[30] Gh. P&un, S. Yu, On synchronization in P systems, Fundamenta Informat-
icae, 37 (1999), and University of Western Ontario Report TR 539, 1999
(www.csd.uwo.ca/faculty /syu/TR539.html).

[31] I. Petre, A normal form for P systems, Bulletin of the EATCS, 67 (Febr. 1999), 165
- 172.

[32] L. Petre, L. Petre, Mobile ambients and P systems, Workshop on Formal Languages,
FCT’99, Tasi, Romania, 1999.

[33] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press,
New York, 1980.

37

[34] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-Verlag,
Heidelberg, 1997.

[35] Y. Suzuki, H. Tanaka, On a LISP implementation of a class of P systems, submitted,
1999.

38

