
Bachelor’s and master’s degree thesis proposals

Some of these topics are based on Spiking Neural P Systems (SNPS), a model
introduced in [14], which provides a general overview of its functioning; others
concern Spiking Neural Networks (SNN), and a recent review can be found in
[1]. For a clearer and more concise description that includes SNPS, SNN, and
some possible applications, see [37].

A simulator capable of executing SNPS with anti-spike and white hole (see
[30]) is currently under development; at this link, some of the proposed topics
involve this code. For a practical approach to working on an SNN that analyzes
images, a comprehensive tutorial can be found here. Different topics may share
the same papers, as they are connected by common themes.

1 Federated learning

The work in [33] provides an in-depth explanation of how Federated Learning
(FL) operates when applied to SNNs, with practical examples, code, and numer-
ous experimental results. The topic is of great interest because it combines two
emerging areas: distributed learning and neural models inspired by biological
functioning.

In [32], although not focused on SNNs, several research directions in the field
of green FL are discussed, summarized in Figure 1. Techniques such as sparsi-
fication make it possible to obtain graphs with a significantly smaller number
of edges than the maximum possible, making them applicable to both SNNs
and SNPS. However, in the case of SNNs, synapses have real-valued weights to
transmit, while in SNPS they are boolean connections (presence or absence of
synapses), making the compression problem conceptually different.

Other techniques, such as pruning and quantization, can be explored to
reduce model complexity, and these topics are related to the themes of graph
compression. A possible thesis direction could therefore involve comparing the
main efficiency techniques of Federated Learning applied to ANN, SNN, and
SNPS, assessing their benefits in terms of computational and spatial savings, as
well as their adaptability to spiking models.

A simple implementation of an SNPS can be found at this link, later evolved
into this one, specifically structured to be privacy-preserving (ideal for FL) and
connected to the work in [25]. However, it is incomplete and not formal, showing
that there is little research in this direction.

Another research direction concerns the modification of distributed learning

1

https://github.com/SandroErba/spiking-p-system
https://snntorch.readthedocs.io/en/latest/tutorials/index.html
https://github.com/miiip/Privacy-Presering-Spiking-Neural-P-System
https://github.com/miiip/Federated-LSNP


algorithms between client and server for SNNs. Such networks require specific
methods, such as Backpropagation Through Time (BPTT) or Batch Normal-
ization Through Time (BNTT), which differ significantly from the algorithms
used in ANNs. These methods also need to be adapted to realistic scenarios
where:

• data are not independent and identically distributed (non-IID), and classes
are unbalanced;

• the energy and computational resources of devices are limited;

• training time or costs must be reduced in distributed environments.

Figure 1: Challenges and possible solutions in Federated Learning toward a
more sustainable approach [32].

Research example

• Find, in the paper [32] or other similar ones, an area where FL and SNNs
offer advantages. For example, in wearable devices, where information
must remain private and energy consumption has major constraints;

• Look for more specific papers on this topic, such as [29], and study the
database used;

2



• Implement an equivalent or similar model, study it, and pursue the re-
search directions proposed by the chosen paper.

2 Tuning of SNPS with heuristic algorithms

Currently, in the simulator mentioned earlier, a simple network composed of
three layers has been implemented, but its structure is fully customizable: it is
possible to change the number of layers and included neurons, the arrangement
of synapses, and the internal rules of the neurons.

The goal is to achieve higher performance through parameter tuning of the
system.

It is also possible to intervene on synaptic connectivity, removing or in-
hibiting specific connections to train and improve the model. Unlike classical
artificial neural networks, where optimization acts on synaptic weights, SNPS
require different mechanisms, and new strategies to manage this dynamic are
currently under exploration.

In this context, the use of heuristic optimization algorithms comes into play.
Therefore, a tuning phase is required, consisting of three main subphases.

• Structure tuning: The number of layers and neurons per level can be modi-
fied, as well as the function performed by each layer (max/average pooling,
convolution, edge detection, fully connected). The problem is complex be-
cause neurons have adaptable activation rules, and several different archi-
tectures can be built. This process can be addressed, for example, through
Tabu Search or by defining a neighborhood function that specifies small
changes to the network topology, such as adding or removing neurons or
synapses.

• Rule tuning: Rule tuning can be managed using Simulated Annealing or
similar techniques to identify the optimal combination of parameters. In
this case, too, the search space is extremely large: each neuron may have
multiple rules, and each rule presents several values to optimize. The
problem is complex due to the high number of variables involved.

• Synapse tuning: To describe this phase, imagine a triangular search area
where each vertex corresponds to the percentage of inhibited synapses
(negative behavior), deleted synapses, and maintained synapses, summing
to 1. Each combination produces different levels of accuracy, and the ex-
ploration of this space can be performed using Particle Swarm Optimiza-
tion or similar methods.

The model is new and still little studied, which brings some challenges but
also many opportunities for improvement, learning, and innovative research
through the use of unconventional optimization techniques.

See [24] for a general overview of learning techniques in this model, and [8]
for a survey on image processing techniques in membrane computing (including
tissue-like and Spiking Neural approaches).

3

https://github.com/SandroErba/spiking-p-system


The work in [41], later extended in [43], proposes a model in which multiple
Extended SNPS operate in parallel, with modifiable rule application probabili-
ties, leading to an Optimization SNPS capable of solving the Knapsack Problem.
This represents a significant example of how SNPS can be adapted and opti-
mized to tackle a specific theoretical problem, with a concrete and well-defined
tuning phase.

Research example

• Analyse the paper just cited [41] and its extension [43];

• Recreate the code presented by abstracting from the membrane model,
i.e. simulating it with matrices or equivalent techniques;

• Find a related research direction. For example, test on a knapsack problem
with a more complex profit function; or on a different NP problem, or
differentiate between the exploration and exploitation phases;

• Adapt the code, obtain results and compare them with the original work
in terms of performance, structure, realism and model complexity.

3 Minimization of energy costs

After an initial phase of accurately estimating the computational costs asso-
ciated with system execution, the next step would be to define the objective
function and study mechanisms to reduce it. The network structure can be
modeled as a directed graph, where nodes represent neurons and edges repre-
sent synapses. Each edge has an associated fixed weight, corresponding to the
energy cost required to transmit a spike, while each node has a weight rep-
resenting the energy needed for firing rule applications (potentially higher in
the presence of multiple rules). These operations may include regular expres-
sion checks, counting, or internal state manipulations; therefore, it is necessary
to distinguish between computational cost and actual energy cost (in joules),
allowing later translation from the former to the latter.

The objective is to minimize the total cost of the network while maintain-
ing functional correctness, evaluated through metrics such as accuracy or other
comparable performance measures. The optimization process can be addressed
using local search or graph-based metaheuristic techniques, comparing the dif-
ferent resulting structures in terms of costs, benefits, and limitations.

A challenge in this research direction lies in the absence of hardware devices
that allow the direct implementation and use of SNPS, making precise and
reliable estimation of energy costs difficult. A possible approach is to adapt
these models to neuromorphic chips developed for SNNs, such as Loihi 2, or to a
lesser extent SpiNNaker or TrueNorth. Further information on works published
using the Loihi 2 chip can be found here .

4

https://intel-ncl.atlassian.net/wiki/spaces/INRC/pages/76382230/INRC+Publications


When applied to SNNs, this thesis topic is more explored, since the reduc-
tion of energy cost in SNNs compared to ANNs is well documented. The work
presented in [31] uses quantization-aware training in an SNN for image classifi-
cation and compares its energy consumption with that of traditional training,
showing how SNN energy usage can be analyzed.

Research example

• Deepen knowledge of the energy costs of SNNs by studying the main
scientific works that describe their characteristics;

• Analyse which layers, activation functions and mechanisms of those net-
works have higher or lower energy consumption;

• Identify a publication that proposes a network of medium-low complexity
and reproduce its implementation as described by the authors;

• Reduce the energy costs of the network and compare the new results with
the previous ones, aiming to minimise performance degradation and max-
imise energy benefits;

• Apply the methods adopted to similar networks, analysing their response
to similar changes.

4 Equivalences between models

A possible research direction involves developing software capable of translat-
ing an SNPS model into other computational formalisms. For example, in [19]
Spiking Petri Nets are introduced, along with an algorithm to convert them into
SNPS and another to perform the reverse transformation. In [3], a correspon-
dence between the two models is also outlined — these are just a few examples.
Following an initial theoretical analysis, it is possible to identify equivalence
relations (or weaker forms of correspondence) between SNPS and discrete event
models, finite or timed automata, logic circuits, and others.

Subsequently, one could design a translator that serves as a bridge between
the chosen models. This would have a dual value: on one hand, it would
contribute to a deeper understanding of the formal properties of SNPS (even
though these have already been extensively studied); on the other hand, it
would enable connections with models that are more widespread and practically
applicable. In this way, SNPS could become an intermediate modeling language
from which to derive representations that are more easily implementable or
simulatable in hardware or software environments.

An interesting reference in this direction is [5], where, although the focus
is on tissue-like P systems rather than SNPS, the VHDL language was used to
implement a P system on FPGA, demonstrating the possibility of transposing
the model into physical hardware.

5



Research example

• Identify a theoretical model similar to SNPS, possibly already related to
them, as in the case of Virus Machines described in [28];

• Study the identified model and, where possible, establish a direct paral-
lelism between its components and the SNPS model;

• Analyse variants of SNPS that allow any gaps to be filled, in order to
apply the theory developed so far to these variants and also to the model
under consideration;

• Implement code that allows conversion from one model to another in the
most efficient way possible, minimising the number of neurons, rules and
synapses in the SNPS.

5 Evolution of Simulators

The WebSnapse simulator [11], available at this link , allows users to create and
execute small SNPS through an intuitive web interface, making it particularly
useful for educational and outreach activities. A possible work direction, more
suited to an internship, consists of developing an extension of the simulator
using the code provided in this GitHub repository.

An improvement to the simulator could involve introducing mechanisms for
the evolution of rules, aimed at exploring optimization dynamics of P systems. It
is therefore proposed to implement a framework inspired by genetic algorithms,
allowing the automatic evolution of P system rules and configurations, with
fitness metrics related to system correctness or efficiency. See the code available
in this repository, which presents a genetic algorithm applied to SNPS.

Research example

• Try out the WebSnapse simulator and analyse its code;

• Learn about the use of Genetic Algorithms in the field of P systems. For
example, in this paper [6], a GA is used to reduce the size of SNPS, while
in this work [9], it is used to generate possible SNPS that satisfy a specific
task;

• Choose a similar research approach and test various types of genetic algo-
rithms to improve SNPS in various aspects such as performance, number
of neurons and number of rules present.

6 Biological inspiration

The human brain represents an extremely efficient processing system, capable
of performing a huge number of operations in parallel with very low energy

6

https://websnapse.github.io/
https://github.com/chinadupaya/WebSnapse
https://github.com/ethiril/SNP_Evolution


consumption compared to traditional computational systems. Although it is
not optimal in terms of speed or numerical precision, it excels in tasks such as
visual recognition, language processing, and associative learning, thanks to the
highly distributed and adaptive nature of its neural networks. An example is
the speed with which the human visual system extracts spatial and semantic
information from a complex scene, identifying objects, relationships, and context
with only a few milliseconds of latency.

A possible research direction is to model, within the framework of SNPS or
SNN, specific biological mechanisms such as those of the retina, the visual cor-
tex, or other sensory areas. The goal is not the full reproduction of a functioning
brain, but the simulation of well-understood local processes — for example, the
behavior of retinal ganglion cells or the neuronal competition mechanisms that
lead to edge recognition [18].

Such studies require at least a basic understanding of the underlying neuro-
physiological principles and a willingness to explore neuroscience literature. A
comprehensive work that covers SNNs and brain-inspired computing is [39].

Research example

• Investigate in detail the functioning of a specific human visual mechanism;

• Simulate its behaviour with a spiking model;

• Analyse its effectiveness and the results obtained by comparing them with
the actual output of the retina.

7 Parallel, discrete and continuous computation

To increase model performance and move closer to the actual functioning of
P systems, the use of the GPU is essential. Each membrane in the P system
computes independently and in parallel, providing advantages in both efficiency
and fidelity with respect to the theoretical behavior. The first step would there-
fore be adapting the simulator for a parallel approach, using frameworks such
as CUDA, OpenCL, or PyTorch to manage simultaneous membrane computa-
tion. This first phase could serve as a possible internship project focused on
implementation and optimization.

Another direction of study concerns time-dependent computation in SNNs.
In theoretical Spiking Neural Network models, time is continuous, and spikes
occur at real-valued instants; however, in practical simulations on digital hard-
ware, time is discretized into small intervals (∆t), updating membrane potentials
and synapses at each step. This discretization allows the network to be executed
synchronously and in parallel, approximating continuous behavior and enabling
efficient GPU use.

In SNPS models, on the other hand, time is completely discrete and syn-
chronous: rules are applied simultaneously to all neurons, defining a well-
structured sequence of computational steps. Comparing these approaches makes

7



it possible to analyze two different conceptions of computational time — one
continuous and biologically inspired, the other discrete and formal — and to
assess advantages, limitations, and possible integrations. More information on
this comparison can be found in [24].

A possible thesis could therefore focus on analyzing parallel implementa-
tions of temporal computation in spiking models (SNN and SNPS). The main
objectives would include:

• implementing a parallel SNPS architecture executable on GPU, with in-
dependent computation per membrane;

• studying differences in time representation between SNNs (continuous
time) and SNPS (discrete and synchronous time), analyzing their impact
on performance and correctness;

• exploring hybrid models, such as Layered SNPS [40, 21], where weights
or fuzzy activations are introduced, comparing the benefits these fusions
bring compared to the original models;

• proposing a comparison framework that enables transitions between dif-
ferent spiking computation paradigms, highlighting emerging properties
and potential advantages in terms of parallelism and temporal modeling.

See this GitHub repository as a starting point for code related to SNPS.

Research example

A possible thesis could therefore focus on analysing the parallel implementation
of temporal computation in both spiking models. The main objectives would
include:

• Implementing a parallel SNPS architecture, executable on GPUs, with
independent computation per membrane. See the work [38] for a matrix-
based definition of SNPS;

• Study the differences in time representation between SNN (continuous
time) and SNPS (discrete and synchronous time), analysing their impact
on performance and correctness;

• Explore hybrid models, see for example Layered SNPS [40, 21], in which
fuzzy weights or activations are introduced, comparing the advantages
brought by these fusions compared to the original models;

• Propose a comparison framework that allows switching between differ-
ent spiking computation paradigms, highlighting their emerging properties
and possible advantages in terms of parallelism and temporal modelling.

8

https://github.com/javihernant/sparse_snp


8 Different models of SNPS

In the developed simulator, only the extension based on anti-spikes has been
implemented, but many other variants exist that could be integrated, making
the system more flexible and adaptable. Different types of P systems, together
with their respective simulators, are described in [2] and, in more detail, in
section 2.2 of [24].

The goal of this line of work is to enable the simulation of different model
variants within the same framework, allowing direct comparisons between them.
It will be necessary to identify which variants are the most promising and worthy
of further exploration through an initial phase of literature research and analysis
of their potential applications.

Without this preliminary study phase, the activity might be more suitable
for an internship, as it would be more focused on the implementation aspect of
the project.

Research example

• Investigate a specific variant of SNPS, for example P systems with Polar-
ization [35];

• Analyse how this variant can be integrated into the simulator under
development;

• Work in your own GitHub branch, subsequently unifying the proposed
variant and observing its functionality.

9 Self organizing maps

It is proposed to extend the SNPS model by introducing a spatial component,
so that each neuron is associated with coordinates (x, y), or possibly (x, y, z),
representing its position in space. The synapses would then connect neurons
that are physically close to each other, allowing the simulation of biological or
anatomical structures (for example, a lung, a heart, or parts of the brain) in a
spatial manner, integrating concepts from graph drawing.

To make the model dynamic, rules could be introduced that allow neurons
to modify their position or the length of their synapses in response to stimuli. A
longer synapse could represent a weaker connection, therefore closer to breaking.
In this way, the system would be able to self-organize in space based on its
internal activity: this idea forms the basis of the concept of Self Organizing
Maps (SOM).

The work [20] presents a short review of SOMs and their main uses, with
reference also to [10], where SOMs are applied to the recognition of medical
images using a dedicated software tool, which is now partially outdated but still
relevant as a starting point.

9

https://github.com/SandroErba/spiking-p-system
https://en.wikipedia.org/wiki/Self-organizing_map
https://en.wikipedia.org/wiki/Self-organizing_map


In [12], a model is presented that uses SNNs and integrates an SOM to
classify simple images (the digits of the MNIST dataset, 28×28 pixels), provid-
ing a concrete example of how a spiking approach can promote unsupervised
self-organization.

There are therefore two possible research directions: on one hand, to further
develop Spiking SOMs (related to SNNs); on the other, to explore the possibility
of an SNPS with positional values and rules that allow movement, thus bringing
the model closer to the self-organizing behavior of SOMs.

Research example

• Deepen knowledge of the model with papers such as [34], which add the
possibility of creating and destroying synapses thanks to rules;

• Program this feature so that it can be used to dynamically change the
topological structure of the network;

• Find a research area and a corresponding dataset where this feature can
be useful; areas can range from galaxy assembly [13] to the selection of
species representative of ecological communities [22];

• Analyse the behaviour of the network applied to the chosen problem, com-
paring it with similar works.

10 Liquid state machine

The Liquid State Machine (LSM), introduced in [17] and part of the Reservoir
Computing framework, is described intuitively on the linked website, which
provides code examples and practical approaches to its implementation. They
are entirely based on SNNs and are designed to effectively capture information
that changes over time, as shown in [23]. This makes them less suitable for static
datasets, such as radiographic images, but very useful for analyzing sequences
of images showing temporal evolution — for instance, tumor growth or repeated
scans of the same anatomical region.

Several open-source codes are available for their simulation, for example this
one or this one, which also includes a concise explanation of their operation.

A possible development would be to deepen the understanding of this type
of model, with the goal of analyzing in detail the behavior of the SNN that
constitutes it. It will be necessary to identify datasets suitable for the task
(temporally variable) and design a structure for their classification.

An interesting aspect is highlighted in [42], which proposes a combination of
LSM and SOM.

10

https://it.wikipedia.org/wiki/Reservoir_computing
https://it.wikipedia.org/wiki/Reservoir_computing
https://medium.com/biased-algorithms/liquid-state-machine-how-it-works-and-how-to-use-it-e92eb71316b5
https://github.com/IGITUGraz/LSM
https://github.com/IGITUGraz/LSM
https://github.com/ricardodeazambuja/Bee


11 Digital twin

Digital Twins (DT) are not simple simulators, but digital models that maintain
a continuous and bidirectional link with the real system they represent. They
receive real-time data from sensors or images, dynamically updating their state,
and in turn, they can send decisions or predictions to the physical system. In
this sense, the DT “lives” alongside its real counterpart, rather than merely
reproducing it statically.

SNNs naturally fit this paradigm, as they process temporal data asyn-
chronously and are inherently energy efficient. As discussed in [15], the integra-
tion between neuromorphic computing and Digital Twin Technology (DTT) can
improve real-time processing, energy efficiency, and model adaptability, opening
new perspectives for dynamic and scalable systems.

Possible applications include the creation of biomedical digital twins, for
example, for monitoring cardiac or brain activity [36], where the spiking net-
work learns and replicates physiological patterns in real time, predicting their
evolution and detecting potential anomalies.

This still little-explored research direction proposes using SNNs as the dy-
namic “brain” of a Digital Twin, combining temporal modeling with the pre-
dictive and adaptive capabilities typical of neuromorphic computing.

12 Privacy-preserving SNPS

A possible research direction concerns the design and training of SNPS networks
that are robust and resistant to privacy attacks. This topic is partly related to
Federated Learning (FL), though not entirely overlapping. The works in [16,
25, 26] address privacy issues in spiking networks, while [27] provides a more
detailed and clear discussion of vulnerabilities and possible solutions.

The code available on GitHub , already mentioned in the section dedicated
to FL, simulates a privacy attack. However, it does not represent a formal SNPS:
the implemented model includes several abstractions absent from the classical
definition of the system, such as softmax and argmax functions, explicit synaptic
weights, and linear applications of the form x ·w+ b, typical of artificial neural
networks.

It can therefore be stated that while the theoretical foundations of these
approaches have been explored, practical implementations consistent with the
SNPS model are still lacking. This represents a promising research direction,
aimed at bridging the gap between theoretical formalism and real-world appli-
cations in the context of privacy-preserving computation.

13 Hybrid models

Another possible research direction involves combining different models or de-
signing hybrid versions that represent a sensible compromise between SNNs,
SNPS, and others. Such solutions open the door to numerous possibilities, both

11

https://github.com/miiip/Federated-LSNP


as extensions of existing models and as new variants. In any case, the approach
is always to study its behaviour from a theoretical and mathematical point of
view, implement its operation with a simulator, and analyse its performance.
Some proposals are outlined below.

• SNPS with weights: The work [26] presented interesting results in the
field of cybersecurity, using a modified SNPS that includes weights in
specific layers. In [40], a similar model is used, called the Layered SN P
System (LSNPS), which is weighted and fuzzy, for image classification. It
is worth noting that the code in this link, cited in the section on FL, was
provided by the authors of that paper. Similar models could be analyzed
in depth, studying their structure and proposing improvements in terms
of system efficiency or robustness.

• SNPS with structural plasticity: SNPS with structural plasticity are
similar to the code developed in the simulator, where some synapses are
destroyed or inhibited during training. These models include specific rules
to govern such behavior, and in their homogeneous version, they use iden-
tical rules for all neurons. Although most works focus on formal language
theory rather than practical applications, they are still relevant because
they rigorously formalize concepts that have been informally explored in
the simulator. See [4, 7] for further details.

• ANN + SNPS: It is possible to design hybrid models combining artificial
neural networks (ANN) and SNPS, for example using CNNs for feature
extraction and SNPS for classification, with the goal of achieving greater
energy efficiency in this latter stage.

• SNN/SNPS + GAN: These architectures could be useful in the med-
ical field — for example, to simulate the temporal evolution of a tumor
or to generate realistic scenarios for prognostic analysis. It is proposed
to use Generative Adversarial Networks (GAN) to create temporal se-
quences showing the progression of nodules and pathologies. An approach
integrating SNNs or SNPS with GANs could enable a more biologically
plausible generation of temporal data.

• SOM + GAN: Using a SOM-SNN such as the one described in [12],
it would be possible to associate tissue classes (e.g., healthy, diseased, or
degenerating) instead of digits from 0 to 9. As shown in Figure 2, in the
case of MNIST, digits are arranged in an orderly way in the feature space.
Similarly, a SOM-SNN could be structured to arrange neurons in a way
that reconstructs, for instance, the shape of a lung. In this scenario, clus-
tering would not only serve to group similar classes but also to recreate
a coherent spatial structure. Since neurons are connected by synapses,
positional information would remain traceable, allowing the evaluation of
how the initial configuration evolved to fit the learned image. It is a com-
plex and experimental idea but could open interesting research directions

12

https://github.com/miiip/Federated-LSNP
https://github.com/SandroErba/spiking-p-system


— especially if combined with a GAN capable of generating realistic lung
images, for example.

Figure 2: The graph in the figure is taken from the SOM in [12], with similar
results also reported in [42].

Bibliography

[1] Sales G Aribe Jr. “Spiking Neural Networks: The Future of Brain-Inspired
Computing”. In: ().

[2] Francis George C Cabarle. “Thinking about spiking neural P systems:
some theories, tools, and research topics”. In: Journal of Membrane Com-
puting 6.2 (2024), pp. 148–167.

[3] Francis George C Cabarle and Henry N Adorna. “On structures and be-
haviors of spiking neural P systems and Petri nets”. In: International
Conference on Membrane Computing. Springer. 2012, pp. 145–160.

[4] Francis George C Cabarle et al. “Spiking neural P systems with structural
plasticity”. In: Neural Computing and Applications 26.8 (2015), pp. 1905–
1917.

[5] Javier Carnero, Daniel Dıaz-Pernil, and Miguel A Gutiérrez-Naranjo. “De-
signing tissue-like P systems for image segmentation on parallel archi-
tectures”. In: Ninth Brainstorming Week on Membrane Computing 2011
(2011), pp. 43–62.

[6] Lovely Joy P Casauay et al. “A Framework for Evolving Spiking Neural
P Systems.” In: International Journal of Unconventional Computing 16
(2021).

13



[7] Ren Tristan A de la Cruz et al. “Homogeneous spiking neural P sys-
tems with structural plasticity”. In: Journal of Membrane Computing 3.1
(2021), pp. 10–21.

[8] Daniel Dı́az-Pernil, Miguel A Gutiérrez-Naranjo, and Hong Peng. “Mem-
brane computing and image processing: a short survey”. In: Journal of
Membrane Computing 1.1 (2019), pp. 58–73.

[9] Jianping Dong et al. “Automatic design of spiking neural P systems based
on genetic algorithms”. In: International Journal of Unconventional Com-
puting 16.2-3 (2021), pp. 201–216.

[10] L Grajciarova et al. “Biomedical image analysis using self-organizing maps”.
In: Matlab Conference. 2012.

[11] Mutya Gulapa et al. “Websnapse reloaded: The next-generation spik-
ing neural p system visual simulator using client-server architecture”. In:
Workshop on Computation: Theory and Practice (WCTP 2023). Atlantis
Press. 2024, pp. 434–461.

[12] Hananel Hazan et al. “Unsupervised learning with self-organizing spik-
ing neural networks”. In: 2018 International Joint Conference on Neural
Networks (IJCNN). IEEE. 2018, pp. 1–6.

[13] Benne W Holwerda et al. “Galaxy and mass assembly (GAMA): Self-
Organizing Map application on nearby galaxies”. In: Monthly Notices of
the Royal Astronomical Society 513.2 (2022), pp. 1972–1984.

[14] Mihai Ionescu, Gheorghe Păun, and Takashi Yokomori. “Spiking neural P
systems”. In: Fundamenta informaticae 71.2-3 (2006), pp. 279–308.

[15] Vijayakumar Kempuraj and C Lakshmi. “A Review of Neuromorphic
Computing and Its Potential for Enhancing Digital Twin Technology”.
In: International Conference on Computational Intelligence in Data Sci-
ence. Springer. 2025, pp. 224–242.

[16] Youngeun Kim, Yeshwanth Venkatesha, and Priyadarshini Panda. “Pri-
vatesnn: privacy-preserving spiking neural networks”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 36. 1. 2022, pp. 1192–
1200.

[17] Wolfgang Maass, Thomas Natschläger, and Henry Markram. “Real-time
computing without stable states: A new framework for neural computation
based on perturbations”. In: Neural computation 14.11 (2002), pp. 2531–
2560.

[18] Richard H Masland. “The neuronal organization of the retina”. In: Neuron
76.2 (2012), pp. 266–280.

[19] Venkata Padmavati Metta, Kamala Krithivasan, and Deepak Garg. “Spik-
ing Neural P systems and Petri nets”. In: Proc. of the Int’l Workshop on
Machine Intelligence Research. 2009.

14



[20] Dubravko Miljković. “Brief review of self-organizing maps”. In: 2017 40th
international convention on information and communication technology,
electronics and microelectronics (MIPRO). IEEE. 2017, pp. 1061–1066.

[21] Hai Nan et al. “Competitive Nonlinear Layered Spiking Neural P Sys-
tem for solving classification problems”. In: Neurocomputing 637 (2025),
p. 130036.

[22] Young-Seuk Park et al. “Application of a self-organizing map to select
representative species in multivariate analysis: a case study determining
diatom distribution patterns across France”. In: Ecological Informatics 1.3
(2006), pp. 247–257.

[23] Meet K Patel et al. “Image Classification using Convolution Liquid State
Machines”. In: 2025 3rd International Conference on Sustainable Comput-
ing and Data Communication Systems (ICSCDS). IEEE. 2025, pp. 2084–
2091.

[24] Prithwineel Paul, Petr Sosik, and Lucie Ciencialova. “A survey on learning
models of spiking neural membrane systems and spiking neural networks”.
In: arXiv preprint arXiv:2403.18609 (2024).

[25] Mihail-Iulian Plesa, Marian Gheorghe, and Florentin Ipate. “Privacy-preserving
Linear Computations in Spiking Neural P Systems”. In: arXiv preprint
arXiv:2309.13803 (2023).

[26] Mihail-Iulian Ples.a et al. “Applications of spiking neural P systems in
cybersecurity”. In: Journal of Membrane Computing 6.4 (2024), pp. 310–
317.

[27] Mihail-Iulian Pleşsa, Marian Gheoghe, and Florentin Ipate. “Private In-
ference on Layered Spiking Neural P Systems”. In: International Work-
Conference on the Interplay Between Natural and Artificial Computation.
Springer. 2024, pp. 163–172.

[28] Antonio Ramı́rez-de-Arellano, David Orellana-Mart́ın, and Mario J Pérez-
Jiménez. “Bridges between spiking neural membrane systems and virus
machines”. In: International Journal of Neural Systems 34.06 (2024),
p. 2450034.

[29] Yonglin Ren and Gang Zhao. “A Novel Spiking Neural Network for Wearable-
Based Human Activity Recognition”. In: 2024 6th International Confer-
ence on Frontier Technologies of Information and Computer (ICFTIC).
IEEE. 2024, pp. 1657–1661.

[30] Tao Song et al. “Spiking neural P systems with white hole neurons”. In:
IEEE transactions on nanobioscience 15.7 (2016), pp. 666–673.

[31] Martino Sorbaro et al. “Optimizing the energy consumption of spiking
neural networks for neuromorphic applications”. In: Frontiers in neuro-
science 14 (2020), p. 662.

[32] Dipanwita Thakur et al. “Green federated learning: A new era of green
aware AI”. In: ACM Computing Surveys 57.8 (2025), pp. 1–36.

15



[33] Yeshwanth Venkatesha et al. “Federated learning with spiking neural net-
works”. In: IEEE Transactions on Signal Processing 69 (2021), pp. 6183–
6194.

[34] Xun Wang et al. “On the computational power of spiking neural P systems
with self-organization”. In: Scientific reports 6.1 (2016), p. 27624.

[35] Tingfang Wu et al. “Spiking neural P systems with polarizations”. In:
IEEE transactions on neural networks and learning systems 29.8 (2017),
pp. 3349–3360.

[36] Hui Xiong et al. “The digital twin brain: A bridge between biological and
artificial intelligence”. In: Intelligent Computing 2 (2023), p. 0055.

[37] Claudio Zandron. “An Overview on Applications of Spiking Neural Net-
works and Spiking Neural P Systems”. In: Languages of Cooperation and
Communication: Essays Dedicated to Erzsébet Csuhaj-Varjú to Celebrate
Her Scientific Career (2025), pp. 267–278.

[38] Xiangxiang Zeng et al. “Matrix representation of spiking neural P sys-
tems”. In: International conference on membrane computing. Springer.
2010, pp. 377–391.

[39] Yi Zeng et al. “Braincog: A spiking neural network based, brain-inspired
cognitive intelligence engine for brain-inspired ai and brain simulation”.
In: Patterns 4.8 (2023).

[40] Gexiang Zhang et al. “A layered spiking neural system for classifica-
tion problems”. In: International journal of neural systems 32.08 (2022),
p. 2250023.

[41] Gexiang Zhang et al. “An optimization spiking neural P system for ap-
proximately solving combinatorial optimization problems”. In: Interna-
tional Journal of Neural Systems 24.05 (2014), p. 1440006.

[42] Youdong Zhang et al. “Unsupervised spiking neural network based on
liquid state machine and self-organizing map”. In: Neurocomputing 620
(2025), p. 129120.

[43] Ming Zhu et al. “An adaptive optimization spiking neural P system for bi-
nary problems”. In: International Journal of Neural Systems 31.01 (2021),
p. 2050054.

16


	Federated learning
	Tuning of SNPS with heuristic algorithms
	Minimization of energy costs
	Equivalences between models
	Evolution of Simulators
	Biological inspiration
	Parallel, discrete and continuous computation
	Different models of SNPS
	Self organizing maps
	Liquid state machine
	Digital twin
	Privacy-preserving SNPS
	Hybrid models
	Bibliography

